![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvbr0 | Structured version Visualization version GIF version |
Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvbr0 | ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . 4 ⊢ (𝐹‘𝑋) = (𝐹‘𝑋) | |
2 | tz6.12i 6375 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ ∅ → ((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋𝐹(𝐹‘𝑋))) | |
3 | 1, 2 | mpi 20 | . . 3 ⊢ ((𝐹‘𝑋) ≠ ∅ → 𝑋𝐹(𝐹‘𝑋)) |
4 | 3 | necon1bi 2960 | . 2 ⊢ (¬ 𝑋𝐹(𝐹‘𝑋) → (𝐹‘𝑋) = ∅) |
5 | 4 | orri 390 | 1 ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 382 = wceq 1632 ≠ wne 2932 ∅c0 4058 class class class wbr 4804 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 |
This theorem is referenced by: fvrn0 6377 eliman0 6384 |
Copyright terms: Public domain | W3C validator |