Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvbigcup Structured version   Visualization version   GIF version

Theorem fvbigcup 32134
Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
fvbigcup.1 𝐴 ∈ V
Assertion
Ref Expression
fvbigcup ( Bigcup 𝐴) = 𝐴

Proof of Theorem fvbigcup
StepHypRef Expression
1 eqid 2651 . . 3 𝐴 = 𝐴
2 fvbigcup.1 . . . . 5 𝐴 ∈ V
32uniex 6995 . . . 4 𝐴 ∈ V
43brbigcup 32130 . . 3 (𝐴 Bigcup 𝐴 𝐴 = 𝐴)
51, 4mpbir 221 . 2 𝐴 Bigcup 𝐴
6 fnbigcup 32133 . . 3 Bigcup Fn V
7 fnbrfvb 6274 . . 3 (( Bigcup Fn V ∧ 𝐴 ∈ V) → (( Bigcup 𝐴) = 𝐴𝐴 Bigcup 𝐴))
86, 2, 7mp2an 708 . 2 (( Bigcup 𝐴) = 𝐴𝐴 Bigcup 𝐴)
95, 8mpbir 221 1 ( Bigcup 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1523  wcel 2030  Vcvv 3231   cuni 4468   class class class wbr 4685   Fn wfn 5921  cfv 5926   Bigcup cbigcup 32066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-symdif 3877  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-eprel 5058  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fo 5932  df-fv 5934  df-1st 7210  df-2nd 7211  df-txp 32086  df-bigcup 32090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator