![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fv2prc | Structured version Visualization version GIF version |
Description: A function's value at a function's value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021.) |
Ref | Expression |
---|---|
fv2prc | ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvprc 6348 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
2 | 1 | fveq1d 6356 | . 2 ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = (∅‘𝐵)) |
3 | 0fv 6390 | . 2 ⊢ (∅‘𝐵) = ∅ | |
4 | 2, 3 | syl6eq 2811 | 1 ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∅c0 4059 ‘cfv 6050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-nul 4942 ax-pow 4993 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-dm 5277 df-iota 6013 df-fv 6058 |
This theorem is referenced by: elfv2ex 6392 |
Copyright terms: Public domain | W3C validator |