![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrn0degnn0 | Structured version Visualization version GIF version |
Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 1-Apr-2021.) |
Ref | Expression |
---|---|
fusgrn0degnn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
fusgrn0degnn0 | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3964 | . . 3 ⊢ (𝑉 ≠ ∅ ↔ ∃𝑘 𝑘 ∈ 𝑉) | |
2 | fusgrn0degnn0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | vtxdgfusgr 26450 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → ∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0) |
4 | fveq2 6229 | . . . . . . . 8 ⊢ (𝑢 = 𝑘 → ((VtxDeg‘𝐺)‘𝑢) = ((VtxDeg‘𝐺)‘𝑘)) | |
5 | 4 | eleq1d 2715 | . . . . . . 7 ⊢ (𝑢 = 𝑘 → (((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 ↔ ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0)) |
6 | 5 | rspcv 3336 | . . . . . 6 ⊢ (𝑘 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0)) |
7 | risset 3091 | . . . . . . . 8 ⊢ (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) | |
8 | fveq2 6229 | . . . . . . . . . . . . 13 ⊢ (𝑣 = 𝑘 → ((VtxDeg‘𝐺)‘𝑣) = ((VtxDeg‘𝐺)‘𝑘)) | |
9 | 8 | eqeq1d 2653 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ((VtxDeg‘𝐺)‘𝑘) = 𝑛)) |
10 | eqcom 2658 | . . . . . . . . . . . 12 ⊢ (((VtxDeg‘𝐺)‘𝑘) = 𝑛 ↔ 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) | |
11 | 9, 10 | syl6bb 276 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ 𝑛 = ((VtxDeg‘𝐺)‘𝑘))) |
12 | 11 | rexbidv 3081 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑘 → (∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘))) |
13 | 12 | rspcev 3340 | . . . . . . . . 9 ⊢ ((𝑘 ∈ 𝑉 ∧ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
14 | 13 | expcom 450 | . . . . . . . 8 ⊢ (∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘) → (𝑘 ∈ 𝑉 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
15 | 7, 14 | sylbi 207 | . . . . . . 7 ⊢ (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → (𝑘 ∈ 𝑉 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
16 | 15 | com12 32 | . . . . . 6 ⊢ (𝑘 ∈ 𝑉 → (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
17 | 6, 16 | syld 47 | . . . . 5 ⊢ (𝑘 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
18 | 3, 17 | syl5 34 | . . . 4 ⊢ (𝑘 ∈ 𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
19 | 18 | exlimiv 1898 | . . 3 ⊢ (∃𝑘 𝑘 ∈ 𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
20 | 1, 19 | sylbi 207 | . 2 ⊢ (𝑉 ≠ ∅ → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
21 | 20 | impcom 445 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 ∅c0 3948 ‘cfv 5926 ℕ0cn0 11330 Vtxcvtx 25919 FinUSGraphcfusgr 26253 VtxDegcvtxdg 26417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-xadd 11985 df-fz 12365 df-hash 13158 df-vtx 25921 df-iedg 25922 df-edg 25985 df-uhgr 25998 df-upgr 26022 df-umgr 26023 df-uspgr 26090 df-usgr 26091 df-fusgr 26254 df-vtxdg 26418 |
This theorem is referenced by: friendshipgt3 27385 |
Copyright terms: Public domain | W3C validator |