MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreghash2wsp Structured version   Visualization version   GIF version

Theorem fusgreghash2wsp 27514
Description: In a finite k-regular graph with N vertices there are N times "k choose 2" paths with length 2, according to statement 8 in [Huneke] p. 2: "... giving n * ( k 2 ) total paths of length two.", if the direction of traversing the path is not respected. For simple paths of length 2 represented by length 3 strings, however, we have again n*k*(k-1) such paths. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 19-May-2021.) (Proof shortened by AV, 12-Jan-2022.)
Hypothesis
Ref Expression
fusgreghash2wsp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgreghash2wsp ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑣,𝑉

Proof of Theorem fusgreghash2wsp
Dummy variables 𝑎 𝑠 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgreghash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fveq1 6353 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑠‘1) = (𝑡‘1))
32eqeq1d 2763 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑠‘1) = 𝑎 ↔ (𝑡‘1) = 𝑎))
43cbvrabv 3340 . . . . . . 7 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎}
54mpteq2i 4894 . . . . . 6 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎})
61, 5fusgreg2wsp 27512 . . . . 5 (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
76ad2antrr 764 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
87fveq2d 6358 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = (♯‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
91fusgrvtxfi 26432 . . . . 5 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
10 eqeq2 2772 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑠‘1) = 𝑎 ↔ (𝑠‘1) = 𝑦))
1110rabbidv 3330 . . . . . . . 8 (𝑎 = 𝑦 → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
12 eqid 2761 . . . . . . . 8 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})
13 ovex 6843 . . . . . . . . 9 (2 WSPathsN 𝐺) ∈ V
1413rabex 4965 . . . . . . . 8 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ V
1511, 12, 14fvmpt 6446 . . . . . . 7 (𝑦𝑉 → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
1615adantl 473 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
17 eqid 2761 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
1817fusgrvtxfi 26432 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
19 wspthnfi 27061 . . . . . . . 8 ((Vtx‘𝐺) ∈ Fin → (2 WSPathsN 𝐺) ∈ Fin)
20 rabfi 8353 . . . . . . . 8 ((2 WSPathsN 𝐺) ∈ Fin → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2118, 19, 203syl 18 . . . . . . 7 (𝐺 ∈ FinUSGraph → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2221adantr 472 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2316, 22eqeltrd 2840 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) ∈ Fin)
241, 52wspmdisj 27513 . . . . . 6 Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)
2524a1i 11 . . . . 5 (𝐺 ∈ FinUSGraph → Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
269, 23, 25hashiun 14774 . . . 4 (𝐺 ∈ FinUSGraph → (♯‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
2726ad2antrr 764 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
281, 5fusgreghash2wspv 27511 . . . . . . . . 9 (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
29 ralim 3087 . . . . . . . . 9 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3028, 29syl 17 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3130adantr 472 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3231imp 444 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)))
33 fveq2 6354 . . . . . . . . 9 (𝑣 = 𝑦 → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣) = ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
3433fveq2d 6358 . . . . . . . 8 (𝑣 = 𝑦 → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
3534eqeq1d 2763 . . . . . . 7 (𝑣 = 𝑦 → ((♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ↔ (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1))))
3635rspccva 3449 . . . . . 6 ((∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ∧ 𝑦𝑉) → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
3732, 36sylan 489 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑦𝑉) → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
3837sumeq2dv 14653 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (𝐾 · (𝐾 − 1)))
399adantr 472 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
40 eqid 2761 . . . . . . . . 9 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
411, 40fusgrregdegfi 26697 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾𝐾 ∈ ℕ0))
4241imp 444 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0)
4342nn0cnd 11566 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℂ)
44 kcnktkm1cn 10674 . . . . . 6 (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
4543, 44syl 17 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 · (𝐾 − 1)) ∈ ℂ)
46 fsumconst 14742 . . . . 5 ((𝑉 ∈ Fin ∧ (𝐾 · (𝐾 − 1)) ∈ ℂ) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
4739, 45, 46syl2an2r 911 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
4838, 47eqtrd 2795 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
498, 27, 483eqtrd 2799 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
5049ex 449 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wne 2933  wral 3051  {crab 3055  c0 4059   ciun 4673  Disj wdisj 4773  cmpt 4882  cfv 6050  (class class class)co 6815  Fincfn 8124  cc 10147  1c1 10150   · cmul 10154  cmin 10479  2c2 11283  0cn0 11505  chash 13332  Σcsu 14636  Vtxcvtx 26095  FinUSGraphcfusgr 26429  VtxDegcvtxdg 26593   WSPathsN cwwspthsn 26953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-ac2 9498  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-disj 4774  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-oi 8583  df-card 8976  df-ac 9150  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-xnn0 11577  df-z 11591  df-uz 11901  df-rp 12047  df-xadd 12161  df-fz 12541  df-fzo 12681  df-seq 13017  df-exp 13076  df-hash 13333  df-word 13506  df-concat 13508  df-s1 13509  df-s2 13814  df-s3 13815  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-sum 14637  df-vtx 26097  df-iedg 26098  df-edg 26161  df-uhgr 26174  df-ushgr 26175  df-upgr 26198  df-umgr 26199  df-uspgr 26266  df-usgr 26267  df-fusgr 26430  df-nbgr 26446  df-vtxdg 26594  df-wlks 26727  df-wlkson 26728  df-trls 26821  df-trlson 26822  df-pths 26844  df-spths 26845  df-pthson 26846  df-spthson 26847  df-wwlks 26955  df-wwlksn 26956  df-wwlksnon 26957  df-wspthsn 26958  df-wspthsnon 26959
This theorem is referenced by:  frrusgrord0  27516
  Copyright terms: Public domain W3C validator