MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fununfun Structured version   Visualization version   GIF version

Theorem fununfun 5972
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununfun (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))

Proof of Theorem fununfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5943 . . 3 (Fun (𝐹𝐺) → Rel (𝐹𝐺))
2 relun 5268 . . 3 (Rel (𝐹𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺))
31, 2sylib 208 . 2 (Fun (𝐹𝐺) → (Rel 𝐹 ∧ Rel 𝐺))
4 simpl 472 . . . . 5 ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐹)
5 fununmo 5971 . . . . . 6 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
65alrimiv 1895 . . . . 5 (Fun (𝐹𝐺) → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
74, 6anim12i 589 . . . 4 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
8 dffun6 5941 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
97, 8sylibr 224 . . 3 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → Fun 𝐹)
10 simpr 476 . . . . 5 ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐺)
11 uncom 3790 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
1211funeqi 5947 . . . . . . 7 (Fun (𝐹𝐺) ↔ Fun (𝐺𝐹))
13 fununmo 5971 . . . . . . 7 (Fun (𝐺𝐹) → ∃*𝑦 𝑥𝐺𝑦)
1412, 13sylbi 207 . . . . . 6 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐺𝑦)
1514alrimiv 1895 . . . . 5 (Fun (𝐹𝐺) → ∀𝑥∃*𝑦 𝑥𝐺𝑦)
1610, 15anim12i 589 . . . 4 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦))
17 dffun6 5941 . . . 4 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦))
1816, 17sylibr 224 . . 3 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → Fun 𝐺)
199, 18jca 553 . 2 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → (Fun 𝐹 ∧ Fun 𝐺))
203, 19mpancom 704 1 (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1521  ∃*wmo 2499  cun 3605   class class class wbr 4685  Rel wrel 5148  Fun wfun 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-fun 5928
This theorem is referenced by:  fsuppunbi  8337
  Copyright terms: Public domain W3C validator