MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsssuppss Structured version   Visualization version   GIF version

Theorem funsssuppss 7366
Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.)
Assertion
Ref Expression
funsssuppss ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))

Proof of Theorem funsssuppss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funss 5945 . . . . . . . . . 10 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
21impcom 445 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → Fun 𝐹)
3 funfn 5956 . . . . . . . . . 10 (Fun 𝐹𝐹 Fn dom 𝐹)
43biimpi 206 . . . . . . . . 9 (Fun 𝐹𝐹 Fn dom 𝐹)
52, 4syl 17 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐹 Fn dom 𝐹)
6 funfn 5956 . . . . . . . . . 10 (Fun 𝐺𝐺 Fn dom 𝐺)
76biimpi 206 . . . . . . . . 9 (Fun 𝐺𝐺 Fn dom 𝐺)
87adantr 480 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐺 Fn dom 𝐺)
95, 8jca 553 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
1093adant3 1101 . . . . . 6 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
1110adantr 480 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
12 dmss 5355 . . . . . . . 8 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
13123ad2ant2 1103 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐹 ⊆ dom 𝐺)
1413adantr 480 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐹 ⊆ dom 𝐺)
15 dmexg 7139 . . . . . . . 8 (𝐺𝑉 → dom 𝐺 ∈ V)
16153ad2ant3 1104 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐺 ∈ V)
1716adantr 480 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐺 ∈ V)
18 simpr 476 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
1914, 17, 183jca 1261 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V))
2011, 19jca 553 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)))
21 funssfv 6247 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
22213expa 1284 . . . . . . . 8 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
23 eqeq1 2655 . . . . . . . . 9 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 ↔ (𝐹𝑥) = 𝑍))
2423biimpd 219 . . . . . . . 8 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2522, 24syl 17 . . . . . . 7 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2625ralrimiva 2995 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
27263adant3 1101 . . . . 5 ((Fun 𝐺𝐹𝐺𝐺𝑉) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2827adantr 480 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
29 suppfnss 7365 . . . 4 (((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)) → (∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
3020, 28, 29sylc 65 . . 3 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
3130expcom 450 . 2 (𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
32 ssid 3657 . . . 4 ∅ ⊆ ∅
33 simpr 476 . . . . . . 7 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
3433con3i 150 . . . . . 6 𝑍 ∈ V → ¬ (𝐹 ∈ V ∧ 𝑍 ∈ V))
35 supp0prc 7343 . . . . . 6 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
3634, 35syl 17 . . . . 5 𝑍 ∈ V → (𝐹 supp 𝑍) = ∅)
37 simpr 476 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
3837con3i 150 . . . . . 6 𝑍 ∈ V → ¬ (𝐺 ∈ V ∧ 𝑍 ∈ V))
39 supp0prc 7343 . . . . . 6 (¬ (𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = ∅)
4038, 39syl 17 . . . . 5 𝑍 ∈ V → (𝐺 supp 𝑍) = ∅)
4136, 40sseq12d 3667 . . . 4 𝑍 ∈ V → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ ∅ ⊆ ∅))
4232, 41mpbiri 248 . . 3 𝑍 ∈ V → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
4342a1d 25 . 2 𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
4431, 43pm2.61i 176 1 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  wss 3607  c0 3948  dom cdm 5143  Fun wfun 5920   Fn wfn 5921  cfv 5926  (class class class)co 6690   supp csupp 7340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-supp 7341
This theorem is referenced by:  tdeglem4  23865
  Copyright terms: Public domain W3C validator