MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsndifnop Structured version   Visualization version   GIF version

Theorem funsndifnop 6401
Description: A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020.)
Hypotheses
Ref Expression
funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = {⟨𝐴, 𝐵⟩}
Assertion
Ref Expression
funsndifnop (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))

Proof of Theorem funsndifnop
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5167 . . 3 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
2 funsndifnop.g . . . . . 6 𝐺 = {⟨𝐴, 𝐵⟩}
3 funsndifnop.a . . . . . . . 8 𝐴 ∈ V
4 funsndifnop.b . . . . . . . 8 𝐵 ∈ V
53, 4funsn 5927 . . . . . . 7 Fun {⟨𝐴, 𝐵⟩}
6 funeq 5896 . . . . . . 7 (𝐺 = {⟨𝐴, 𝐵⟩} → (Fun 𝐺 ↔ Fun {⟨𝐴, 𝐵⟩}))
75, 6mpbiri 248 . . . . . 6 (𝐺 = {⟨𝐴, 𝐵⟩} → Fun 𝐺)
82, 7ax-mp 5 . . . . 5 Fun 𝐺
9 funeq 5896 . . . . . . 7 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺 ↔ Fun ⟨𝑥, 𝑦⟩))
10 vex 3198 . . . . . . . 8 𝑥 ∈ V
11 vex 3198 . . . . . . . 8 𝑦 ∈ V
1210, 11funop 6399 . . . . . . 7 (Fun ⟨𝑥, 𝑦⟩ ↔ ∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}))
139, 12syl6bb 276 . . . . . 6 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺 ↔ ∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩})))
14 eqeq2 2631 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝐺 = ⟨𝑥, 𝑦⟩ ↔ 𝐺 = {⟨𝑎, 𝑎⟩}))
15 eqeq1 2624 . . . . . . . . . . . . 13 (𝐺 = {⟨𝐴, 𝐵⟩} → (𝐺 = {⟨𝑎, 𝑎⟩} ↔ {⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩}))
16 opex 4923 . . . . . . . . . . . . . . 15 𝐴, 𝐵⟩ ∈ V
1716sneqr 4362 . . . . . . . . . . . . . 14 ({⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩} → ⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩)
183, 4opth 4935 . . . . . . . . . . . . . . 15 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩ ↔ (𝐴 = 𝑎𝐵 = 𝑎))
19 eqtr3 2641 . . . . . . . . . . . . . . . 16 ((𝐴 = 𝑎𝐵 = 𝑎) → 𝐴 = 𝐵)
2019a1d 25 . . . . . . . . . . . . . . 15 ((𝐴 = 𝑎𝐵 = 𝑎) → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2118, 20sylbi 207 . . . . . . . . . . . . . 14 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑎⟩ → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2217, 21syl 17 . . . . . . . . . . . . 13 ({⟨𝐴, 𝐵⟩} = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2315, 22syl6bi 243 . . . . . . . . . . . 12 (𝐺 = {⟨𝐴, 𝐵⟩} → (𝐺 = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵)))
242, 23ax-mp 5 . . . . . . . . . . 11 (𝐺 = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → 𝐴 = 𝐵))
2514, 24syl6bi 243 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑥 = {𝑎} → 𝐴 = 𝐵)))
2625com23 86 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩} → (𝑥 = {𝑎} → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)))
2726impcom 446 . . . . . . . 8 ((𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵))
2827exlimiv 1856 . . . . . . 7 (∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵))
2928com12 32 . . . . . 6 (𝐺 = ⟨𝑥, 𝑦⟩ → (∃𝑎(𝑥 = {𝑎} ∧ ⟨𝑥, 𝑦⟩ = {⟨𝑎, 𝑎⟩}) → 𝐴 = 𝐵))
3013, 29sylbid 230 . . . . 5 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun 𝐺𝐴 = 𝐵))
318, 30mpi 20 . . . 4 (𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)
3231exlimivv 1858 . . 3 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝐵)
331, 32sylbi 207 . 2 (𝐺 ∈ (V × V) → 𝐴 = 𝐵)
3433necon3ai 2816 1 (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wex 1702  wcel 1988  wne 2791  Vcvv 3195  {csn 4168  cop 4174   × cxp 5102  Fun wfun 5870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884
This theorem is referenced by:  funsneqopb  6404  snstrvtxval  25910  snstriedgval  25911
  Copyright terms: Public domain W3C validator