Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnfv Structured version   Visualization version   GIF version

Theorem funressnfv 41529
Description: A restriction to a singleton with a function value is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funressnfv (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))

Proof of Theorem funressnfv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5461 . . 3 Rel (𝐹 ↾ {(𝐺𝑋)})
21a1i 11 . 2 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Rel (𝐹 ↾ {(𝐺𝑋)}))
3 dmfco 6311 . . . . . . . . 9 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
43biimpd 219 . . . . . . . 8 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) → (𝐺𝑋) ∈ dom 𝐹))
54funfni 6029 . . . . . . 7 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹𝐺) → (𝐺𝑋) ∈ dom 𝐹))
6 dmressnsn 5473 . . . . . . . 8 ((𝐺𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)})
7 eleq2 2719 . . . . . . . . . 10 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) ↔ 𝑥 ∈ {(𝐺𝑋)}))
8 velsn 4226 . . . . . . . . . . 11 (𝑥 ∈ {(𝐺𝑋)} ↔ 𝑥 = (𝐺𝑋))
9 dmressnsn 5473 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ dom (𝐹𝐺) → dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋})
10 dffun7 5953 . . . . . . . . . . . . . . . . . . 19 (Fun ((𝐹𝐺) ↾ {𝑋}) ↔ (Rel ((𝐹𝐺) ↾ {𝑋}) ∧ ∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
11 snidg 4239 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋 ∈ dom (𝐹𝐺) → 𝑋 ∈ {𝑋})
1211adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → 𝑋 ∈ {𝑋})
13 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({𝑋} = dom ((𝐹𝐺) ↾ {𝑋}) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1413eqcoms 2659 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1514adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1612, 15mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋}))
17 fvex 6239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐺𝑋) ∈ V
1817isseti 3240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑧 𝑧 = (𝐺𝑋)
19 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 = (𝐺𝑋) ↔ (𝐺𝑋) = 𝑧)
20 fnbrfvb 6274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋) = 𝑧𝑋𝐺𝑧))
2119, 20syl5bb 272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑧 = (𝐺𝑋) ↔ 𝑋𝐺𝑧))
2221biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑧 = (𝐺𝑋) → 𝑋𝐺𝑧))
23 breq1 4688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐺𝑋) = 𝑧 → ((𝐺𝑋)𝐹𝑦𝑧𝐹𝑦))
2423eqcoms 2659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = (𝐺𝑋) → ((𝐺𝑋)𝐹𝑦𝑧𝐹𝑦))
2524biimpcd 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐺𝑋)𝐹𝑦 → (𝑧 = (𝐺𝑋) → 𝑧𝐹𝑦))
2622, 25anim12ii 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑧 = (𝐺𝑋) → (𝑋𝐺𝑧𝑧𝐹𝑦)))
2726eximdv 1886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (∃𝑧 𝑧 = (𝐺𝑋) → ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
2818, 27mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦))
29 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐺 Fn 𝐴𝑋𝐴) → 𝑋𝐴)
30 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑦 ∈ V
31 brcog 5321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑋𝐴𝑦 ∈ V) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3229, 30, 31sylancl 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3332adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3428, 33mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → 𝑋(𝐹𝐺)𝑦)
35 snidg 4239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑋𝐴𝑋 ∈ {𝑋})
3635biantrud 527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑋𝐴 → (𝑋(𝐹𝐺)𝑦 ↔ (𝑋(𝐹𝐺)𝑦𝑋 ∈ {𝑋})))
3730brres 5437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑋((𝐹𝐺) ↾ {𝑋})𝑦 ↔ (𝑋(𝐹𝐺)𝑦𝑋 ∈ {𝑋}))
3836, 37syl6rbbr 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑋𝐴 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑋(𝐹𝐺)𝑦))
3938ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑋(𝐹𝐺)𝑦))
4034, 39mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → 𝑋((𝐹𝐺) ↾ {𝑋})𝑦)
4140ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋)𝐹𝑦𝑋((𝐹𝐺) ↾ {𝑋})𝑦))
4241adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦𝑋((𝐹𝐺) ↾ {𝑋})𝑦))
43 breq1 4688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑋 = 𝑥 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4443eqcoms 2659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 𝑋 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4544ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4642, 45sylibd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4746alrimiv 1895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∀𝑦((𝐺𝑋)𝐹𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
48 moim 2548 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑦((𝐺𝑋)𝐹𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺𝑋)𝐹𝑦))
4947, 48syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺𝑋)𝐹𝑦))
5049ex 449 . . . . . . . . . . . . . . . . . . . . . . . 24 (((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) → ((𝐺 Fn 𝐴𝑋𝐴) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5150com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5216, 51rspcimdv 3341 . . . . . . . . . . . . . . . . . . . . . 22 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5352ex 449 . . . . . . . . . . . . . . . . . . . . 21 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹𝐺) → (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5453com13 88 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → (𝑋 ∈ dom (𝐹𝐺) → (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5554adantl 481 . . . . . . . . . . . . . . . . . . 19 ((Rel ((𝐹𝐺) ↾ {𝑋}) ∧ ∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦) → (𝑋 ∈ dom (𝐹𝐺) → (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5610, 55sylbi 207 . . . . . . . . . . . . . . . . . 18 (Fun ((𝐹𝐺) ↾ {𝑋}) → (𝑋 ∈ dom (𝐹𝐺) → (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5756com13 88 . . . . . . . . . . . . . . . . 17 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
589, 57mpcom 38 . . . . . . . . . . . . . . . 16 (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5958imp31 447 . . . . . . . . . . . . . . 15 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦(𝐺𝑋)𝐹𝑦)
6017snid 4241 . . . . . . . . . . . . . . . . . 18 (𝐺𝑋) ∈ {(𝐺𝑋)}
6160biantru 525 . . . . . . . . . . . . . . . . 17 ((𝐺𝑋)𝐹𝑦 ↔ ((𝐺𝑋)𝐹𝑦 ∧ (𝐺𝑋) ∈ {(𝐺𝑋)}))
6261a1i 11 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦 ↔ ((𝐺𝑋)𝐹𝑦 ∧ (𝐺𝑋) ∈ {(𝐺𝑋)})))
6362mobidv 2519 . . . . . . . . . . . . . . 15 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (∃*𝑦(𝐺𝑋)𝐹𝑦 ↔ ∃*𝑦((𝐺𝑋)𝐹𝑦 ∧ (𝐺𝑋) ∈ {(𝐺𝑋)})))
6459, 63mpbid 222 . . . . . . . . . . . . . 14 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦((𝐺𝑋)𝐹𝑦 ∧ (𝐺𝑋) ∈ {(𝐺𝑋)}))
6564adantl 481 . . . . . . . . . . . . 13 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → ∃*𝑦((𝐺𝑋)𝐹𝑦 ∧ (𝐺𝑋) ∈ {(𝐺𝑋)}))
66 breq1 4688 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐺𝑋) → (𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦 ↔ (𝐺𝑋)(𝐹 ↾ {(𝐺𝑋)})𝑦))
6730brres 5437 . . . . . . . . . . . . . . . 16 ((𝐺𝑋)(𝐹 ↾ {(𝐺𝑋)})𝑦 ↔ ((𝐺𝑋)𝐹𝑦 ∧ (𝐺𝑋) ∈ {(𝐺𝑋)}))
6866, 67syl6rbb 277 . . . . . . . . . . . . . . 15 (𝑥 = (𝐺𝑋) → (((𝐺𝑋)𝐹𝑦 ∧ (𝐺𝑋) ∈ {(𝐺𝑋)}) ↔ 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6968adantr 480 . . . . . . . . . . . . . 14 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → (((𝐺𝑋)𝐹𝑦 ∧ (𝐺𝑋) ∈ {(𝐺𝑋)}) ↔ 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
7069mobidv 2519 . . . . . . . . . . . . 13 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → (∃*𝑦((𝐺𝑋)𝐹𝑦 ∧ (𝐺𝑋) ∈ {(𝐺𝑋)}) ↔ ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
7165, 70mpbid 222 . . . . . . . . . . . 12 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)
7271ex 449 . . . . . . . . . . 11 (𝑥 = (𝐺𝑋) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
738, 72sylbi 207 . . . . . . . . . 10 (𝑥 ∈ {(𝐺𝑋)} → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
747, 73syl6bi 243 . . . . . . . . 9 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
7574com23 86 . . . . . . . 8 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
766, 75syl 17 . . . . . . 7 ((𝐺𝑋) ∈ dom 𝐹 → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
775, 76syl6com 37 . . . . . 6 (𝑋 ∈ dom (𝐹𝐺) → ((𝐺 Fn 𝐴𝑋𝐴) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))))
7877a1d 25 . . . . 5 (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))))
7978imp31 447 . . . 4 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
8079pm2.43i 52 . . 3 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
8180ralrimiv 2994 . 2 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)
82 dffun7 5953 . 2 (Fun (𝐹 ↾ {(𝐺𝑋)}) ↔ (Rel (𝐹 ↾ {(𝐺𝑋)}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
832, 81, 82sylanbrc 699 1 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wex 1744  wcel 2030  ∃*wmo 2499  wral 2941  Vcvv 3231  {csn 4210   class class class wbr 4685  dom cdm 5143  cres 5145  ccom 5147  Rel wrel 5148  Fun wfun 5920   Fn wfn 5921  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934
This theorem is referenced by:  afvco2  41577
  Copyright terms: Public domain W3C validator