![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funresfunco | Structured version Visualization version GIF version |
Description: Composition of two functions, generalization of funco 5966. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
Ref | Expression |
---|---|
funresfunco | ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funco 5966 | . 2 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) | |
2 | ssid 3657 | . . . . 5 ⊢ ran 𝐺 ⊆ ran 𝐺 | |
3 | cores 5676 | . . . . 5 ⊢ (ran 𝐺 ⊆ ran 𝐺 → ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((𝐹 ↾ ran 𝐺) ∘ 𝐺) = (𝐹 ∘ 𝐺) |
5 | 4 | eqcomi 2660 | . . 3 ⊢ (𝐹 ∘ 𝐺) = ((𝐹 ↾ ran 𝐺) ∘ 𝐺) |
6 | 5 | funeqi 5947 | . 2 ⊢ (Fun (𝐹 ∘ 𝐺) ↔ Fun ((𝐹 ↾ ran 𝐺) ∘ 𝐺)) |
7 | 1, 6 | sylibr 224 | 1 ⊢ ((Fun (𝐹 ↾ ran 𝐺) ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ⊆ wss 3607 ran crn 5144 ↾ cres 5145 ∘ ccom 5147 Fun wfun 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-fun 5928 |
This theorem is referenced by: fnresfnco 41527 |
Copyright terms: Public domain | W3C validator |