![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funrel | Structured version Visualization version GIF version |
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5928 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | 1 | simplbi 475 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3607 I cid 5052 ◡ccnv 5142 ∘ ccom 5147 Rel wrel 5148 Fun wfun 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-fun 5928 |
This theorem is referenced by: 0nelfun 5944 funeu 5951 nfunv 5959 funopg 5960 funssres 5968 funun 5970 fununfun 5972 fununi 6002 funcnvres2 6007 fnrel 6027 fcoi1 6116 f1orel 6178 funbrfv 6272 funbrfv2b 6279 funfv2 6305 funfvbrb 6370 fimacnvinrn 6388 fvn0ssdmfun 6390 funopsn 6453 funresdfunsn 6496 wfrrel 7465 tfrlem6 7523 tfr2b 7537 pmresg 7927 fundmen 8071 resfifsupp 8344 rankwflemb 8694 gruima 9662 structcnvcnv 15918 inviso1 16473 setciso 16788 pmtrsn 17985 00lsp 19029 edg0iedg0 25994 edg0iedg0OLD 25995 edg0usgr 26190 usgr1v0edg 26194 fmptcof2 29585 fgreu 29599 bnj1379 31027 fundmpss 31790 funsseq 31792 frrlem5b 31910 frrlem6 31914 nolt02o 31970 nosupbnd1 31985 nosupbnd2lem1 31986 nosupbnd2 31987 noetalem2 31989 noetalem3 31990 imageval 32162 imagesset 32185 cocnv 33650 frege124d 38370 frege129d 38372 frege133d 38374 funbrafv 41559 funbrafv2b 41560 rngciso 42307 rngcisoALTV 42319 ringciso 42358 ringcisoALTV 42382 |
Copyright terms: Public domain | W3C validator |