Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpsstri Structured version   Visualization version   GIF version

Theorem funpsstri 31995
 Description: A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.)
Assertion
Ref Expression
funpsstri ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐹 = 𝐺𝐺𝐹))

Proof of Theorem funpsstri
StepHypRef Expression
1 funssres 6073 . . . . . 6 ((Fun 𝐻𝐹𝐻) → (𝐻 ↾ dom 𝐹) = 𝐹)
21ex 397 . . . . 5 (Fun 𝐻 → (𝐹𝐻 → (𝐻 ↾ dom 𝐹) = 𝐹))
3 funssres 6073 . . . . . 6 ((Fun 𝐻𝐺𝐻) → (𝐻 ↾ dom 𝐺) = 𝐺)
43ex 397 . . . . 5 (Fun 𝐻 → (𝐺𝐻 → (𝐻 ↾ dom 𝐺) = 𝐺))
52, 4anim12d 588 . . . 4 (Fun 𝐻 → ((𝐹𝐻𝐺𝐻) → ((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺)))
6 ssres2 5566 . . . . . 6 (dom 𝐹 ⊆ dom 𝐺 → (𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺))
7 ssres2 5566 . . . . . 6 (dom 𝐺 ⊆ dom 𝐹 → (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹))
86, 7orim12i 874 . . . . 5 ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → ((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ∨ (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹)))
9 sseq12 3775 . . . . . 6 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ↔ 𝐹𝐺))
10 sseq12 3775 . . . . . . 7 (((𝐻 ↾ dom 𝐺) = 𝐺 ∧ (𝐻 ↾ dom 𝐹) = 𝐹) → ((𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹) ↔ 𝐺𝐹))
1110ancoms 455 . . . . . 6 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹) ↔ 𝐺𝐹))
129, 11orbi12d 883 . . . . 5 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → (((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ∨ (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹)) ↔ (𝐹𝐺𝐺𝐹)))
138, 12syl5ib 234 . . . 4 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → (𝐹𝐺𝐺𝐹)))
145, 13syl6 35 . . 3 (Fun 𝐻 → ((𝐹𝐻𝐺𝐻) → ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → (𝐹𝐺𝐺𝐹))))
15143imp 1100 . 2 ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐺𝐹))
16 sspsstri 3857 . 2 ((𝐹𝐺𝐺𝐹) ↔ (𝐹𝐺𝐹 = 𝐺𝐺𝐹))
1715, 16sylib 208 1 ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐹 = 𝐺𝐺𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∨ wo 826   ∨ w3o 1069   ∧ w3a 1070   = wceq 1630   ⊆ wss 3721   ⊊ wpss 3722  dom cdm 5249   ↾ cres 5251  Fun wfun 6025 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-res 5261  df-fun 6033 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator