![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version |
Description: Functionality of a class given by a "maps to" notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
funmpt2 | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 5964 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funeqi 5947 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
4 | 1, 3 | mpbir 221 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ↦ cmpt 4762 Fun wfun 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-fun 5928 |
This theorem is referenced by: cantnfp1lem1 8613 tz9.12lem2 8689 tz9.12lem3 8690 rankf 8695 cardf2 8807 fin23lem30 9202 hashf1rn 13181 funtopon 20773 qustgpopn 21970 ustn0 22071 metuval 22401 ipasslem8 27820 xppreima2 29578 funcnvmpt 29596 gsummpt2co 29908 metidval 30061 pstmval 30066 brsiga 30374 measbasedom 30393 sseqval 30578 ballotlem7 30725 sinccvglem 31692 bj-evalfun 33150 bj-ccinftydisj 33230 bj-elccinfty 33231 bj-minftyccb 33242 comptiunov2i 38315 icccncfext 40418 stoweidlem27 40562 stirlinglem14 40622 fourierdlem70 40711 fourierdlem71 40712 hoi2toco 41142 mptcfsupp 42486 lcoc0 42536 lincresunit2 42592 |
Copyright terms: Public domain | W3C validator |