![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funiun | Structured version Visualization version GIF version |
Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.) |
Ref | Expression |
---|---|
funiun | ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6060 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | dffn5 6385 | . . 3 ⊢ (𝐹 Fn dom 𝐹 ↔ 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) | |
3 | 1, 2 | sylbb 209 | . 2 ⊢ (Fun 𝐹 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
4 | fvex 6344 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
5 | 4 | dfmpt 6556 | . 2 ⊢ (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉} |
6 | 3, 5 | syl6eq 2821 | 1 ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 {csn 4317 〈cop 4323 ∪ ciun 4655 ↦ cmpt 4864 dom cdm 5250 Fun wfun 6024 Fn wfn 6025 ‘cfv 6030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 |
This theorem is referenced by: funopsn 6559 |
Copyright terms: Public domain | W3C validator |