![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimass4 | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
funimass4 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3624 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵)) | |
2 | eqcom 2658 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
3 | ssel 3630 | . . . . . . . . . . . 12 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
4 | funbrfvb 6276 | . . . . . . . . . . . . 13 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
5 | 4 | ex 449 | . . . . . . . . . . . 12 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦))) |
6 | 3, 5 | syl9 77 | . . . . . . . . . . 11 ⊢ (𝐴 ⊆ dom 𝐹 → (Fun 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)))) |
7 | 6 | imp31 447 | . . . . . . . . . 10 ⊢ (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
8 | 2, 7 | syl5bb 272 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
9 | 8 | rexbidva 3078 | . . . . . . . 8 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
10 | vex 3234 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
11 | 10 | elima 5506 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) |
12 | 9, 11 | syl6rbbr 279 | . . . . . . 7 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (𝑦 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
13 | 12 | imbi1d 330 | . . . . . 6 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
14 | r19.23v 3052 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) | |
15 | 13, 14 | syl6bbr 278 | . . . . 5 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
16 | 15 | albidv 1889 | . . . 4 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
17 | ralcom4 3255 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) | |
18 | fvex 6239 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
19 | eleq1 2718 | . . . . . . 7 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) | |
20 | 18, 19 | ceqsalv 3264 | . . . . . 6 ⊢ (∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ (𝐹‘𝑥) ∈ 𝐵) |
21 | 20 | ralbii 3009 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
22 | 17, 21 | bitr3i 266 | . . . 4 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
23 | 16, 22 | syl6bb 276 | . . 3 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
24 | 1, 23 | syl5bb 272 | . 2 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
25 | 24 | ancoms 468 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 class class class wbr 4685 dom cdm 5143 “ cima 5146 Fun wfun 5920 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 |
This theorem is referenced by: funimass3 6373 funimass5 6374 funconstss 6375 funimassov 6853 fnwelem 7337 cnfcomlem 8634 dfac12lem2 9004 ackbij1b 9099 wunom 9580 phimullem 15531 frmdss2 17447 cntzmhm2 17818 dprd2da 18487 frlmsslsp 20183 1stckgenlem 21404 txcnp 21471 ptcnplem 21472 xkopt 21506 xkoinjcn 21538 tgqtop 21563 uzrest 21748 cnflf2 21854 lmflf 21856 txflf 21857 cnextcn 21918 ghmcnp 21965 ucnima 22132 metcnp 22393 tchcph 23082 ovolficcss 23284 opnmbllem 23415 ellimc2 23686 ellimc3 23688 deg1n0ima 23894 dvloglem 24439 logf1o2 24441 dchrghm 25026 upgrreslem 26241 umgrreslem 26242 xrofsup 29661 eulerpartlemd 30556 erdszelem2 31300 cvmlift3lem7 31433 mclsax 31592 filnetlem4 32501 poimir 33572 opnmbllem0 33575 cnres2 33692 funimaeq 39775 icccncfext 40418 |
Copyright terms: Public domain | W3C validator |