![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimass1 | Structured version Visualization version GIF version |
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.) |
Ref | Expression |
---|---|
funimass1 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imass2 5536 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ 𝐵 → (𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵)) | |
2 | funimacnv 6008 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) | |
3 | dfss 3622 | . . . . . 6 ⊢ (𝐴 ⊆ ran 𝐹 ↔ 𝐴 = (𝐴 ∩ ran 𝐹)) | |
4 | 3 | biimpi 206 | . . . . 5 ⊢ (𝐴 ⊆ ran 𝐹 → 𝐴 = (𝐴 ∩ ran 𝐹)) |
5 | 4 | eqcomd 2657 | . . . 4 ⊢ (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴) |
6 | 2, 5 | sylan9eq 2705 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → (𝐹 “ (◡𝐹 “ 𝐴)) = 𝐴) |
7 | 6 | sseq1d 3665 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵) ↔ 𝐴 ⊆ (𝐹 “ 𝐵))) |
8 | 1, 7 | syl5ib 234 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∩ cin 3606 ⊆ wss 3607 ◡ccnv 5142 ran crn 5144 “ cima 5146 Fun wfun 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-fun 5928 |
This theorem is referenced by: kqnrmlem1 21594 hmeontr 21620 nrmhmph 21645 cnheiborlem 22800 |
Copyright terms: Public domain | W3C validator |