![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvop | Structured version Visualization version GIF version |
Description: Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
funfvop | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . 2 ⊢ (𝐹‘𝐴) = (𝐹‘𝐴) | |
2 | funopfvb 6277 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) = (𝐹‘𝐴) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
3 | 1, 2 | mpbii 223 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 〈cop 4216 dom cdm 5143 Fun wfun 5920 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 |
This theorem is referenced by: funfvbrb 6370 fvimacnv 6372 fnopfv 6391 fvelrn 6392 dff3 6412 fnsnb 6473 funfvima3 6535 wfrlem17 7476 tfrlem9a 7527 fundmen 8071 adj1 28920 fgreu 29599 |
Copyright terms: Public domain | W3C validator |