![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvima2 | Structured version Visualization version GIF version |
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
Ref | Expression |
---|---|
funfvima2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3738 | . . 3 ⊢ (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) | |
2 | funfvima 6655 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | |
3 | 2 | ex 449 | . . . . 5 ⊢ (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
4 | 3 | com23 86 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
5 | 4 | a2d 29 | . . 3 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
6 | 1, 5 | syl5 34 | . 2 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
7 | 6 | imp 444 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ⊆ wss 3715 dom cdm 5266 “ cima 5269 Fun wfun 6043 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: resfvresima 6657 fnfvima 6659 f1oweALT 7317 tz7.49 7709 phimullem 15686 mrcuni 16483 frlmsslsp 20337 lindfrn 20362 iscldtop 21101 1stcfb 21450 2ndcomap 21463 rnelfm 21958 fmfnfmlem2 21960 fmfnfmlem4 21962 qtopbaslem 22763 tgqioo 22804 bndth 22958 volsup 23524 dyadmbllem 23567 opnmbllem 23569 itg1addlem4 23665 c1liplem1 23958 dvcnvrelem1 23979 dvcnvrelem2 23980 plyco0 24147 plyaddlem1 24168 plymullem1 24169 dvloglem 24593 logf1o2 24595 efopn 24603 axcontlem10 26052 imaelshi 29226 funimass4f 29746 sitgclg 30713 cvmliftlem3 31576 nocvxminlem 32199 nocvxmin 32200 ivthALT 32636 opnmbllem0 33758 ismtyres 33920 heibor1lem 33921 ismrc 37766 aomclem4 38129 funfvima2d 38971 fnfvimad 39958 |
Copyright terms: Public domain | W3C validator |