![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvima | Structured version Visualization version GIF version |
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
funfvima | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5569 | . . . . . . 7 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
2 | 1 | elin2 3936 | . . . . . 6 ⊢ (𝐵 ∈ dom (𝐹 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹)) |
3 | funres 6082 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
4 | fvelrn 6507 | . . . . . . . . 9 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) | |
5 | 3, 4 | sylan 489 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
6 | fvres 6360 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐵) = (𝐹‘𝐵)) | |
7 | 6 | eleq1d 2816 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝐴 → (((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
8 | df-ima 5271 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
9 | 8 | eleq2i 2823 | . . . . . . . . 9 ⊢ ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
10 | 7, 9 | syl6rbbr 279 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝐴 → ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
11 | 5, 10 | syl5ibrcom 237 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
12 | 11 | ex 449 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐵 ∈ dom (𝐹 ↾ 𝐴) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
13 | 2, 12 | syl5bir 233 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
14 | 13 | expd 451 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
15 | 14 | com12 32 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
16 | 15 | impd 446 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
17 | 16 | pm2.43b 55 | 1 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2131 dom cdm 5258 ran crn 5259 ↾ cres 5260 “ cima 5261 Fun wfun 6035 ‘cfv 6041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-fv 6049 |
This theorem is referenced by: funfvima2 6648 elovimad 6848 tz7.48-2 7698 tz9.12lem3 8817 djuun 8942 lindff1 20353 txcnp 21617 c1liplem1 23950 pthdivtx 26827 htthlem 28075 tpr2rico 30259 brsiga 30547 erdszelem8 31479 relowlpssretop 33515 limsuppnfdlem 40428 limsupresxr 40493 liminfresxr 40494 liminfvalxr 40510 |
Copyright terms: Public domain | W3C validator |