![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvbrb | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is in the domain of 𝐹. (Contributed by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
funfvbrb | ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 6493 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
2 | df-br 4805 | . . 3 ⊢ (𝐴𝐹(𝐹‘𝐴) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
3 | 1, 2 | sylibr 224 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴𝐹(𝐹‘𝐴)) |
4 | funrel 6066 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | releldm 5513 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) | |
6 | 4, 5 | sylan 489 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹(𝐹‘𝐴)) → 𝐴 ∈ dom 𝐹) |
7 | 3, 6 | impbida 913 | 1 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ 𝐴𝐹(𝐹‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 〈cop 4327 class class class wbr 4804 dom cdm 5266 Rel wrel 5271 Fun wfun 6043 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: fmptco 6560 fpwwe2lem13 9676 fpwwe2 9677 climdm 14504 invco 16652 funciso 16755 ffthiso 16810 fuciso 16856 setciso 16962 catciso 16978 lmcau 23331 dvcnp 23901 dvadd 23922 dvmul 23923 dvaddf 23924 dvmulf 23925 dvco 23929 dvcof 23930 dvcjbr 23931 dvcnvlem 23958 dvferm1 23967 dvferm2 23969 ulmdm 24366 ulmdvlem3 24375 minvecolem4a 28063 hlimf 28424 hhsscms 28466 occllem 28492 occl 28493 chscllem4 28829 fmptcof2 29787 heiborlem9 33949 bfplem1 33952 rngciso 42510 rngcisoALTV 42522 ringciso 42561 ringcisoALTV 42585 |
Copyright terms: Public domain | W3C validator |