![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfv2 | Structured version Visualization version GIF version |
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
funfv2 | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfv 6415 | . 2 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) | |
2 | funrel 6054 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | relimasn 5634 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) |
5 | 4 | unieqd 4586 | . 2 ⊢ (Fun 𝐹 → ∪ (𝐹 “ {𝐴}) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
6 | 1, 5 | eqtrd 2782 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 {cab 2734 {csn 4309 ∪ cuni 4576 class class class wbr 4792 “ cima 5257 Rel wrel 5259 Fun wfun 6031 ‘cfv 6037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-fv 6045 |
This theorem is referenced by: funfv2f 6417 |
Copyright terms: Public domain | W3C validator |