![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version |
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | funeq 6069 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 Fun wfun 6043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-in 3722 df-ss 3729 df-br 4805 df-opab 4865 df-rel 5273 df-cnv 5274 df-co 5275 df-fun 6051 |
This theorem is referenced by: funopg 6083 funsng 6098 f1eq1 6257 f1ssf1 6329 fvn0ssdmfun 6513 funcnvuni 7284 fundmge2nop0 13466 funcnvs2 13858 funcnvs3 13859 funcnvs4 13860 shftfn 14012 isstruct2 16069 structfung 16074 setsfun 16095 setsfun0 16096 strle1 16175 monfval 16593 ismon 16594 monpropd 16598 isepi 16601 isfth 16775 estrres 16980 lubfun 17181 glbfun 17194 acsficl2d 17377 frlmphl 20322 eengbas 26060 ebtwntg 26061 ecgrtg 26062 elntg 26063 uhgrspansubgrlem 26381 istrl 26803 ispth 26829 isspth 26830 upgrwlkdvspth 26845 uhgrwkspthlem1 26859 uhgrwkspthlem2 26860 usgr2wlkspthlem1 26863 usgr2wlkspthlem2 26864 pthdlem1 26872 2spthd 27061 0spth 27278 3spthd 27328 trlsegvdeglem2 27373 trlsegvdeglem3 27374 ajfun 28025 fresf1o 29742 padct 29806 smatrcl 30171 esum2dlem 30463 omssubadd 30671 sitgf 30718 fperdvper 40636 ovnovollem1 41376 dfateq12d 41715 afvres 41758 fdivval 42843 |
Copyright terms: Public domain | W3C validator |