MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeq Structured version   Visualization version   GIF version

Theorem funeq 6051
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 3805 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funss 6050 . . 3 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵))
4 eqimss 3804 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funss 6050 . . 3 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴))
73, 6impbid 202 1 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1630  wss 3721  Fun wfun 6025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-in 3728  df-ss 3735  df-br 4785  df-opab 4845  df-rel 5256  df-cnv 5257  df-co 5258  df-fun 6033
This theorem is referenced by:  funeqi  6052  funeqd  6053  fununi  6104  cnvresid  6108  fneq1  6119  funop  6556  funsndifnop  6558  nvof1o  6678  funcnvuni  7265  elpmg  8024  fundmeng  8183  isfsupp  8434  dfac9  9159  axdc3lem2  9474  frlmphllem  20335  usgredgop  26286  locfinreflem  30241  orvcval  30853  bnj1379  31233  bnj1385  31235  bnj1497  31460  elfunsg  32354  funop1  41818
  Copyright terms: Public domain W3C validator