![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeq | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funeq | ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3805 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | funss 6050 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Fun 𝐴 → Fun 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵)) |
4 | eqimss 3804 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
5 | funss 6050 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
7 | 3, 6 | impbid 202 | 1 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ⊆ wss 3721 Fun wfun 6025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-in 3728 df-ss 3735 df-br 4785 df-opab 4845 df-rel 5256 df-cnv 5257 df-co 5258 df-fun 6033 |
This theorem is referenced by: funeqi 6052 funeqd 6053 fununi 6104 cnvresid 6108 fneq1 6119 funop 6556 funsndifnop 6558 nvof1o 6678 funcnvuni 7265 elpmg 8024 fundmeng 8183 isfsupp 8434 dfac9 9159 axdc3lem2 9474 frlmphllem 20335 usgredgop 26286 locfinreflem 30241 orvcval 30853 bnj1379 31233 bnj1385 31235 bnj1497 31460 elfunsg 32354 funop1 41818 |
Copyright terms: Public domain | W3C validator |