Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmpss Structured version   Visualization version   GIF version

Theorem fundmpss 31640
Description: If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.)
Assertion
Ref Expression
fundmpss (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))

Proof of Theorem fundmpss
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 3694 . . . . 5 (𝐹𝐺𝐹𝐺)
2 dmss 5312 . . . . 5 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
31, 2syl 17 . . . 4 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
43a1i 11 . . 3 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺))
5 pssdif 3936 . . . . . . . 8 (𝐹𝐺 → (𝐺𝐹) ≠ ∅)
6 n0 3923 . . . . . . . 8 ((𝐺𝐹) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝐺𝐹))
75, 6sylib 208 . . . . . . 7 (𝐹𝐺 → ∃𝑝 𝑝 ∈ (𝐺𝐹))
87adantl 482 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∃𝑝 𝑝 ∈ (𝐺𝐹))
9 funrel 5893 . . . . . . . . . . 11 (Fun 𝐺 → Rel 𝐺)
10 reldif 5228 . . . . . . . . . . 11 (Rel 𝐺 → Rel (𝐺𝐹))
119, 10syl 17 . . . . . . . . . 10 (Fun 𝐺 → Rel (𝐺𝐹))
12 elrel 5212 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
13 eleq1 2687 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹)))
14 df-br 4645 . . . . . . . . . . . . . . . 16 (𝑥(𝐺𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐺𝐹))
1513, 14syl6bbr 278 . . . . . . . . . . . . . . 15 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝐺𝐹) ↔ 𝑥(𝐺𝐹)𝑦))
1615biimpcd 239 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐺𝐹) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
1716adantl 482 . . . . . . . . . . . . 13 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑥(𝐺𝐹)𝑦))
18172eximdv 1846 . . . . . . . . . . . 12 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
1912, 18mpd 15 . . . . . . . . . . 11 ((Rel (𝐺𝐹) ∧ 𝑝 ∈ (𝐺𝐹)) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦)
2019ex 450 . . . . . . . . . 10 (Rel (𝐺𝐹) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2111, 20syl 17 . . . . . . . . 9 (Fun 𝐺 → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
2221adantr 481 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥𝑦 𝑥(𝐺𝐹)𝑦))
23 difss 3729 . . . . . . . . . . . . 13 (𝐺𝐹) ⊆ 𝐺
2423ssbri 4688 . . . . . . . . . . . 12 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
2524eximi 1760 . . . . . . . . . . 11 (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦)
2625a1i 11 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑦 𝑥𝐺𝑦))
27 brdif 4696 . . . . . . . . . . . . . . 15 (𝑥(𝐺𝐹)𝑦 ↔ (𝑥𝐺𝑦 ∧ ¬ 𝑥𝐹𝑦))
2827simprbi 480 . . . . . . . . . . . . . 14 (𝑥(𝐺𝐹)𝑦 → ¬ 𝑥𝐹𝑦)
2928adantl 482 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ 𝑥𝐹𝑦)
301ssbrd 4687 . . . . . . . . . . . . . . . 16 (𝐹𝐺 → (𝑥𝐹𝑧𝑥𝐺𝑧))
3130ad2antlr 762 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐺𝑧))
3227simplbi 476 . . . . . . . . . . . . . . . . . . 19 (𝑥(𝐺𝐹)𝑦𝑥𝐺𝑦)
33 dffun2 5886 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧)))
3433simprbi 480 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐺 → ∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
35 2sp 2054 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3635sps 2053 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥𝑦𝑧((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧) → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
3734, 36syl 17 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → 𝑦 = 𝑧))
38 breq2 4648 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
3938biimprd 238 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))
4037, 39syl6 35 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝐺 → ((𝑥𝐺𝑦𝑥𝐺𝑧) → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4140expd 452 . . . . . . . . . . . . . . . . . . 19 (Fun 𝐺 → (𝑥𝐺𝑦 → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))))
4232, 41syl5 34 . . . . . . . . . . . . . . . . . 18 (Fun 𝐺 → (𝑥(𝐺𝐹)𝑦 → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦))))
4342imp 445 . . . . . . . . . . . . . . . . 17 ((Fun 𝐺𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4443adantlr 750 . . . . . . . . . . . . . . . 16 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐺𝑧 → (𝑥𝐹𝑧𝑥𝐹𝑦)))
4544com23 86 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧 → (𝑥𝐺𝑧𝑥𝐹𝑦)))
4631, 45mpdd 43 . . . . . . . . . . . . . 14 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (𝑥𝐹𝑧𝑥𝐹𝑦))
4746exlimdv 1859 . . . . . . . . . . . . 13 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → (∃𝑧 𝑥𝐹𝑧𝑥𝐹𝑦))
4829, 47mtod 189 . . . . . . . . . . . 12 (((Fun 𝐺𝐹𝐺) ∧ 𝑥(𝐺𝐹)𝑦) → ¬ ∃𝑧 𝑥𝐹𝑧)
4948ex 450 . . . . . . . . . . 11 ((Fun 𝐺𝐹𝐺) → (𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
5049exlimdv 1859 . . . . . . . . . 10 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → ¬ ∃𝑧 𝑥𝐹𝑧))
5126, 50jcad 555 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → (∃𝑦 𝑥(𝐺𝐹)𝑦 → (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5251eximdv 1844 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → (∃𝑥𝑦 𝑥(𝐺𝐹)𝑦 → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5322, 52syld 47 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
5453exlimdv 1859 . . . . . 6 ((Fun 𝐺𝐹𝐺) → (∃𝑝 𝑝 ∈ (𝐺𝐹) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧)))
558, 54mpd 15 . . . . 5 ((Fun 𝐺𝐹𝐺) → ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
56 nss 3655 . . . . . 6 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹))
57 vex 3198 . . . . . . . . 9 𝑥 ∈ V
5857eldm 5310 . . . . . . . 8 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦 𝑥𝐺𝑦)
5957eldm 5310 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 ↔ ∃𝑧 𝑥𝐹𝑧)
6059notbii 310 . . . . . . . 8 𝑥 ∈ dom 𝐹 ↔ ¬ ∃𝑧 𝑥𝐹𝑧)
6158, 60anbi12i 732 . . . . . . 7 ((𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ (∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6261exbii 1772 . . . . . 6 (∃𝑥(𝑥 ∈ dom 𝐺 ∧ ¬ 𝑥 ∈ dom 𝐹) ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6356, 62bitri 264 . . . . 5 (¬ dom 𝐺 ⊆ dom 𝐹 ↔ ∃𝑥(∃𝑦 𝑥𝐺𝑦 ∧ ¬ ∃𝑧 𝑥𝐹𝑧))
6455, 63sylibr 224 . . . 4 ((Fun 𝐺𝐹𝐺) → ¬ dom 𝐺 ⊆ dom 𝐹)
6564ex 450 . . 3 (Fun 𝐺 → (𝐹𝐺 → ¬ dom 𝐺 ⊆ dom 𝐹))
664, 65jcad 555 . 2 (Fun 𝐺 → (𝐹𝐺 → (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹)))
67 dfpss3 3685 . 2 (dom 𝐹 ⊊ dom 𝐺 ↔ (dom 𝐹 ⊆ dom 𝐺 ∧ ¬ dom 𝐺 ⊆ dom 𝐹))
6866, 67syl6ibr 242 1 (Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1479   = wceq 1481  wex 1702  wcel 1988  wne 2791  cdif 3564  wss 3567  wpss 3568  c0 3907  cop 4174   class class class wbr 4644  dom cdm 5104  Rel wrel 5109  Fun wfun 5870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-fun 5878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator