Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmge2nop0 Structured version   Visualization version   GIF version

Theorem fundmge2nop0 13486
 Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fundmge2nop 13487 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 16091. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
Assertion
Ref Expression
fundmge2nop0 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fundmge2nop0
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7263 . . . . . 6 (𝐺 ∈ V → dom 𝐺 ∈ V)
2 hashge2el2dif 13474 . . . . . . 7 ((dom 𝐺 ∈ V ∧ 2 ≤ (♯‘dom 𝐺)) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏)
32ex 449 . . . . . 6 (dom 𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏))
41, 3syl 17 . . . . 5 (𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏))
5 df-ne 2933 . . . . . . 7 (𝑎𝑏 ↔ ¬ 𝑎 = 𝑏)
6 elvv 5334 . . . . . . . . . . 11 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
7 difeq1 3864 . . . . . . . . . . . . . . . . 17 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝐺 ∖ {∅}) = (⟨𝑥, 𝑦⟩ ∖ {∅}))
87funeqd 6071 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) ↔ Fun (⟨𝑥, 𝑦⟩ ∖ {∅})))
9 opwo0id 5109 . . . . . . . . . . . . . . . . . . 19 𝑥, 𝑦⟩ = (⟨𝑥, 𝑦⟩ ∖ {∅})
109eqcomi 2769 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ ∖ {∅}) = ⟨𝑥, 𝑦
1110funeqi 6070 . . . . . . . . . . . . . . . . 17 (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) ↔ Fun ⟨𝑥, 𝑦⟩)
12 dmeq 5479 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 = ⟨𝑥, 𝑦⟩ → dom 𝐺 = dom ⟨𝑥, 𝑦⟩)
1312eleq2d 2825 . . . . . . . . . . . . . . . . . . . 20 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑎 ∈ dom 𝐺𝑎 ∈ dom ⟨𝑥, 𝑦⟩))
1412eleq2d 2825 . . . . . . . . . . . . . . . . . . . 20 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑏 ∈ dom 𝐺𝑏 ∈ dom ⟨𝑥, 𝑦⟩))
1513, 14anbi12d 749 . . . . . . . . . . . . . . . . . . 19 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ↔ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)))
16 eqid 2760 . . . . . . . . . . . . . . . . . . . . . 22 𝑥, 𝑦⟩ = ⟨𝑥, 𝑦
17 vex 3343 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 ∈ V
18 vex 3343 . . . . . . . . . . . . . . . . . . . . . 22 𝑦 ∈ V
1916, 17, 18funopdmsn 6579 . . . . . . . . . . . . . . . . . . . . 21 ((Fun ⟨𝑥, 𝑦⟩ ∧ 𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → 𝑎 = 𝑏)
20193expb 1114 . . . . . . . . . . . . . . . . . . . 20 ((Fun ⟨𝑥, 𝑦⟩ ∧ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)) → 𝑎 = 𝑏)
2120expcom 450 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
2215, 21syl6bi 243 . . . . . . . . . . . . . . . . . 18 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏)))
2322com23 86 . . . . . . . . . . . . . . . . 17 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2411, 23syl5bi 232 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
258, 24sylbid 230 . . . . . . . . . . . . . . 15 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2625com23 86 . . . . . . . . . . . . . 14 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → 𝑎 = 𝑏)))
2726impd 446 . . . . . . . . . . . . 13 (𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2827exlimivv 2009 . . . . . . . . . . . 12 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2928com12 32 . . . . . . . . . . 11 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
306, 29syl5bi 232 . . . . . . . . . 10 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (𝐺 ∈ (V × V) → 𝑎 = 𝑏))
3130con3d 148 . . . . . . . . 9 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V)))
3231ex 449 . . . . . . . 8 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V))))
3332com23 86 . . . . . . 7 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (¬ 𝑎 = 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
345, 33syl5bi 232 . . . . . 6 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (𝑎𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
3534rexlimivv 3174 . . . . 5 (∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V)))
364, 35syl6 35 . . . 4 (𝐺 ∈ V → (2 ≤ (♯‘dom 𝐺) → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
3736com13 88 . . 3 (Fun (𝐺 ∖ {∅}) → (2 ≤ (♯‘dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))))
3837imp 444 . 2 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)))
39 prcnel 3358 . 2 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
4038, 39pm2.61d1 171 1 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051  Vcvv 3340   ∖ cdif 3712  ∅c0 4058  {csn 4321  ⟨cop 4327   class class class wbr 4804   × cxp 5264  dom cdm 5266  Fun wfun 6043  ‘cfv 6049   ≤ cle 10287  2c2 11282  ♯chash 13331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-hash 13332 This theorem is referenced by:  fundmge2nop  13487  fun2dmnop0  13488  funvtxdmge2val  26111  funiedgdmge2val  26112  funvtxdmge2valOLD  26119  funiedgdmge2valOLD  26120
 Copyright terms: Public domain W3C validator