MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem8 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem8 17010
Description: Lemma 8 for funcsetcestrc 17012. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6315 . . . 4 ( I ↾ (𝑌𝑚 𝑋)):(𝑌𝑚 𝑋)–1-1-onto→(𝑌𝑚 𝑋)
2 f1of 6278 . . . 4 (( I ↾ (𝑌𝑚 𝑋)):(𝑌𝑚 𝑋)–1-1-onto→(𝑌𝑚 𝑋) → ( I ↾ (𝑌𝑚 𝑋)):(𝑌𝑚 𝑋)⟶(𝑌𝑚 𝑋))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌𝑚 𝑋)):(𝑌𝑚 𝑋)⟶(𝑌𝑚 𝑋))
4 elmapi 8031 . . . . 5 (𝑓 ∈ (𝑌𝑚 𝑋) → 𝑓:𝑋𝑌)
5 simpr 471 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐶𝑌𝐶))
65ancomd 453 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌𝐶𝑋𝐶))
7 elmapg 8022 . . . . . . . . 9 ((𝑌𝐶𝑋𝐶) → (𝑓 ∈ (𝑌𝑚 𝑋) ↔ 𝑓:𝑋𝑌))
86, 7syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌𝑚 𝑋) ↔ 𝑓:𝑋𝑌))
98biimpar 463 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ (𝑌𝑚 𝑋))
10 funcsetcestrc.s . . . . . . . . . . . . 13 𝑆 = (SetCat‘𝑈)
11 funcsetcestrc.c . . . . . . . . . . . . 13 𝐶 = (Base‘𝑆)
12 funcsetcestrc.f . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
1310, 11, 12funcsetcestrclem1 17002 . . . . . . . . . . . 12 ((𝜑𝑌𝐶) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
1413fveq2d 6336 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
15 eqid 2771 . . . . . . . . . . . . . 14 {⟨(Base‘ndx), 𝑌⟩} = {⟨(Base‘ndx), 𝑌⟩}
16151strbas 16188 . . . . . . . . . . . . 13 (𝑌𝐶𝑌 = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
1716eqcomd 2777 . . . . . . . . . . . 12 (𝑌𝐶 → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1817adantl 467 . . . . . . . . . . 11 ((𝜑𝑌𝐶) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
1914, 18eqtrd 2805 . . . . . . . . . 10 ((𝜑𝑌𝐶) → (Base‘(𝐹𝑌)) = 𝑌)
2019adantrl 695 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑌)) = 𝑌)
2110, 11, 12funcsetcestrclem1 17002 . . . . . . . . . . . 12 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
2221fveq2d 6336 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
23 eqid 2771 . . . . . . . . . . . . 13 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
24231strbas 16188 . . . . . . . . . . . 12 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2524adantl 467 . . . . . . . . . . 11 ((𝜑𝑋𝐶) → 𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2622, 25eqtr4d 2808 . . . . . . . . . 10 ((𝜑𝑋𝐶) → (Base‘(𝐹𝑋)) = 𝑋)
2726adantrr 696 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (Base‘(𝐹𝑋)) = 𝑋)
2820, 27oveq12d 6811 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((Base‘(𝐹𝑌)) ↑𝑚 (Base‘(𝐹𝑋))) = (𝑌𝑚 𝑋))
2928adantr 466 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → ((Base‘(𝐹𝑌)) ↑𝑚 (Base‘(𝐹𝑋))) = (𝑌𝑚 𝑋))
309, 29eleqtrrd 2853 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑓:𝑋𝑌) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑𝑚 (Base‘(𝐹𝑋))))
3130ex 397 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓:𝑋𝑌𝑓 ∈ ((Base‘(𝐹𝑌)) ↑𝑚 (Base‘(𝐹𝑋)))))
324, 31syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑓 ∈ (𝑌𝑚 𝑋) → 𝑓 ∈ ((Base‘(𝐹𝑌)) ↑𝑚 (Base‘(𝐹𝑋)))))
3332ssrdv 3758 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌𝑚 𝑋) ⊆ ((Base‘(𝐹𝑌)) ↑𝑚 (Base‘(𝐹𝑋))))
343, 33fssd 6197 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌𝑚 𝑋)):(𝑌𝑚 𝑋)⟶((Base‘(𝐹𝑌)) ↑𝑚 (Base‘(𝐹𝑋))))
35 funcsetcestrc.u . . . 4 (𝜑𝑈 ∈ WUni)
36 funcsetcestrc.o . . . 4 (𝜑 → ω ∈ 𝑈)
37 funcsetcestrc.g . . . 4 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
3810, 11, 12, 35, 36, 37funcsetcestrclem5 17007 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌𝑚 𝑋)))
3935adantr 466 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑈 ∈ WUni)
40 eqid 2771 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4110, 35setcbas 16935 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
4241, 11syl6reqr 2824 . . . . . . . 8 (𝜑𝐶 = 𝑈)
4342eleq2d 2836 . . . . . . 7 (𝜑 → (𝑋𝐶𝑋𝑈))
4443biimpd 219 . . . . . 6 (𝜑 → (𝑋𝐶𝑋𝑈))
4544adantrd 479 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑋𝑈))
4645imp 393 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝑈)
4742eleq2d 2836 . . . . . . 7 (𝜑 → (𝑌𝐶𝑌𝑈))
4847biimpd 219 . . . . . 6 (𝜑 → (𝑌𝐶𝑌𝑈))
4948adantld 478 . . . . 5 (𝜑 → ((𝑋𝐶𝑌𝐶) → 𝑌𝑈))
5049imp 393 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝑈)
5110, 39, 40, 46, 50setchom 16937 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌𝑚 𝑋))
52 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
53 eqid 2771 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
5410, 11, 12, 35, 36funcsetcestrclem2 17003 . . . . 5 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ 𝑈)
5554adantrr 696 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑋) ∈ 𝑈)
5610, 11, 12, 35, 36funcsetcestrclem2 17003 . . . . 5 ((𝜑𝑌𝐶) → (𝐹𝑌) ∈ 𝑈)
5756adantrl 695 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝐹𝑌) ∈ 𝑈)
58 eqid 2771 . . . 4 (Base‘(𝐹𝑋)) = (Base‘(𝐹𝑋))
59 eqid 2771 . . . 4 (Base‘(𝐹𝑌)) = (Base‘(𝐹𝑌))
6052, 39, 53, 55, 57, 58, 59estrchom 16974 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) = ((Base‘(𝐹𝑌)) ↑𝑚 (Base‘(𝐹𝑋))))
6138, 51, 60feq123d 6174 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)) ↔ ( I ↾ (𝑌𝑚 𝑋)):(𝑌𝑚 𝑋)⟶((Base‘(𝐹𝑌)) ↑𝑚 (Base‘(𝐹𝑋)))))
6234, 61mpbird 247 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  {csn 4316  cop 4322  cmpt 4863   I cid 5156  cres 5251  wf 6027  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  cmpt2 6795  ωcom 7212  𝑚 cmap 8009  WUnicwun 9724  ndxcnx 16061  Basecbs 16064  Hom chom 16160  SetCatcsetc 16932  ExtStrCatcestrc 16969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-omul 7718  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-wun 9726  df-ni 9896  df-pli 9897  df-mi 9898  df-lti 9899  df-plpq 9932  df-mpq 9933  df-ltpq 9934  df-enq 9935  df-nq 9936  df-erq 9937  df-plq 9938  df-mq 9939  df-1nq 9940  df-rq 9941  df-ltnq 9942  df-np 10005  df-plp 10007  df-ltp 10009  df-enr 10079  df-nr 10080  df-c 10144  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-hom 16174  df-cco 16175  df-setc 16933  df-estrc 16970
This theorem is referenced by:  funcsetcestrc  17012  fthsetcestrc  17013  fullsetcestrc  17014
  Copyright terms: Public domain W3C validator