![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for funcsetcestrc 17012. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
Ref | Expression |
---|---|
funcsetcestrclem2 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | . . 3 ⊢ 𝑆 = (SetCat‘𝑈) | |
2 | funcsetcestrc.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
3 | funcsetcestrc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
4 | 1, 2, 3 | funcsetcestrclem1 17002 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) |
5 | funcsetcestrc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcsetcestrc.o | . . 3 ⊢ (𝜑 → ω ∈ 𝑈) | |
7 | 1, 2, 5, 6 | setc1strwun 17001 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) |
8 | 4, 7 | eqeltrd 2850 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {csn 4317 〈cop 4323 ↦ cmpt 4864 ‘cfv 6030 ωcom 7216 WUnicwun 9728 ndxcnx 16061 Basecbs 16064 SetCatcsetc 16932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-omul 7722 df-er 7900 df-ec 7902 df-qs 7906 df-map 8015 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-wun 9730 df-ni 9900 df-pli 9901 df-mi 9902 df-lti 9903 df-plpq 9936 df-mpq 9937 df-ltpq 9938 df-enq 9939 df-nq 9940 df-erq 9941 df-plq 9942 df-mq 9943 df-1nq 9944 df-rq 9945 df-ltnq 9946 df-np 10009 df-plp 10011 df-ltp 10013 df-enr 10083 df-nr 10084 df-c 10148 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-hom 16174 df-cco 16175 df-setc 16933 |
This theorem is referenced by: funcsetcestrclem8 17010 funcsetcestrclem9 17011 fullsetcestrc 17014 |
Copyright terms: Public domain | W3C validator |