MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres Structured version   Visualization version   GIF version

Theorem funcres 16757
Description: A functor restricted to a subcategory is a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
funcres.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
funcres.h (𝜑𝐻 ∈ (Subcat‘𝐶))
Assertion
Ref Expression
funcres (𝜑 → (𝐹f 𝐻) ∈ ((𝐶cat 𝐻) Func 𝐷))

Proof of Theorem funcres
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcres.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2 funcres.h . . . 4 (𝜑𝐻 ∈ (Subcat‘𝐶))
31, 2resfval 16753 . . 3 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
43fveq2d 6356 . . . . 5 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
5 fvex 6362 . . . . . . 7 (1st𝐹) ∈ V
65resex 5601 . . . . . 6 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
7 dmexg 7262 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → dom 𝐻 ∈ V)
8 mptexg 6648 . . . . . . 7 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
92, 7, 83syl 18 . . . . . 6 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
10 op2ndg 7346 . . . . . 6 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
116, 9, 10sylancr 698 . . . . 5 (𝜑 → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
124, 11eqtrd 2794 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
1312opeq2d 4560 . . 3 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩ = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
143, 13eqtr4d 2797 . 2 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩)
15 eqid 2760 . . . 4 (Base‘(𝐶cat 𝐻)) = (Base‘(𝐶cat 𝐻))
16 eqid 2760 . . . 4 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2760 . . . 4 (Hom ‘(𝐶cat 𝐻)) = (Hom ‘(𝐶cat 𝐻))
18 eqid 2760 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
19 eqid 2760 . . . 4 (Id‘(𝐶cat 𝐻)) = (Id‘(𝐶cat 𝐻))
20 eqid 2760 . . . 4 (Id‘𝐷) = (Id‘𝐷)
21 eqid 2760 . . . 4 (comp‘(𝐶cat 𝐻)) = (comp‘(𝐶cat 𝐻))
22 eqid 2760 . . . 4 (comp‘𝐷) = (comp‘𝐷)
23 eqid 2760 . . . . 5 (𝐶cat 𝐻) = (𝐶cat 𝐻)
2423, 2subccat 16709 . . . 4 (𝜑 → (𝐶cat 𝐻) ∈ Cat)
25 funcrcl 16724 . . . . . 6 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
261, 25syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2726simprd 482 . . . 4 (𝜑𝐷 ∈ Cat)
28 eqid 2760 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
29 relfunc 16723 . . . . . . . 8 Rel (𝐶 Func 𝐷)
30 1st2ndbr 7384 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3129, 1, 30sylancr 698 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3228, 16, 31funcf1 16727 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
33 eqidd 2761 . . . . . . . 8 (𝜑 → dom dom 𝐻 = dom dom 𝐻)
342, 33subcfn 16702 . . . . . . 7 (𝜑𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
352, 34, 28subcss1 16703 . . . . . 6 (𝜑 → dom dom 𝐻 ⊆ (Base‘𝐶))
3632, 35fssresd 6232 . . . . 5 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻):dom dom 𝐻⟶(Base‘𝐷))
3726simpld 477 . . . . . . 7 (𝜑𝐶 ∈ Cat)
3823, 28, 37, 34, 35rescbas 16690 . . . . . 6 (𝜑 → dom dom 𝐻 = (Base‘(𝐶cat 𝐻)))
3938feq2d 6192 . . . . 5 (𝜑 → (((1st𝐹) ↾ dom dom 𝐻):dom dom 𝐻⟶(Base‘𝐷) ↔ ((1st𝐹) ↾ dom dom 𝐻):(Base‘(𝐶cat 𝐻))⟶(Base‘𝐷)))
4036, 39mpbid 222 . . . 4 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻):(Base‘(𝐶cat 𝐻))⟶(Base‘𝐷))
41 fvex 6362 . . . . . . 7 ((2nd𝐹)‘𝑧) ∈ V
4241resex 5601 . . . . . 6 (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)) ∈ V
43 eqid 2760 . . . . . 6 (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))
4442, 43fnmpti 6183 . . . . 5 (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) Fn dom 𝐻
4512eqcomd 2766 . . . . . 6 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) = (2nd ‘(𝐹f 𝐻)))
46 fndm 6151 . . . . . . . 8 (𝐻 Fn (dom dom 𝐻 × dom dom 𝐻) → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻))
4734, 46syl 17 . . . . . . 7 (𝜑 → dom 𝐻 = (dom dom 𝐻 × dom dom 𝐻))
4838sqxpeqd 5298 . . . . . . 7 (𝜑 → (dom dom 𝐻 × dom dom 𝐻) = ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻))))
4947, 48eqtrd 2794 . . . . . 6 (𝜑 → dom 𝐻 = ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻))))
5045, 49fneq12d 6144 . . . . 5 (𝜑 → ((𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) Fn dom 𝐻 ↔ (2nd ‘(𝐹f 𝐻)) Fn ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻)))))
5144, 50mpbii 223 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) Fn ((Base‘(𝐶cat 𝐻)) × (Base‘(𝐶cat 𝐻))))
52 eqid 2760 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
5331adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
5435adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → dom dom 𝐻 ⊆ (Base‘𝐶))
55 simprl 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑥 ∈ (Base‘(𝐶cat 𝐻)))
5638adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → dom dom 𝐻 = (Base‘(𝐶cat 𝐻)))
5755, 56eleqtrrd 2842 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑥 ∈ dom dom 𝐻)
5854, 57sseldd 3745 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑥 ∈ (Base‘𝐶))
59 simprr 813 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑦 ∈ (Base‘(𝐶cat 𝐻)))
6059, 56eleqtrrd 2842 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑦 ∈ dom dom 𝐻)
6154, 60sseldd 3745 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝑦 ∈ (Base‘𝐶))
6228, 52, 18, 53, 58, 61funcf2 16729 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
632adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐻 ∈ (Subcat‘𝐶))
6434adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
6563, 64, 52, 57, 60subcss2 16704 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦))
6662, 65fssresd 6232 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
671adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐹 ∈ (𝐶 Func 𝐷))
6867, 63, 64, 57, 60resf2nd 16756 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦) = ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)))
6968feq1d 6191 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ↔ ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))))
7066, 69mpbird 247 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
7123, 28, 37, 34, 35reschom 16691 . . . . . . . 8 (𝜑𝐻 = (Hom ‘(𝐶cat 𝐻)))
7271adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → 𝐻 = (Hom ‘(𝐶cat 𝐻)))
7372oveqd 6830 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶cat 𝐻))𝑦))
74 fvres 6368 . . . . . . . . 9 (𝑥 ∈ dom dom 𝐻 → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
7557, 74syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
76 fvres 6368 . . . . . . . . 9 (𝑦 ∈ dom dom 𝐻 → (((1st𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st𝐹)‘𝑦))
7760, 76syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st𝐹)‘𝑦))
7875, 77oveq12d 6831 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦)) = (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
7978eqcomd 2766 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) = ((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦)))
8073, 79feq23d 6201 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ↔ (𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥(Hom ‘(𝐶cat 𝐻))𝑦)⟶((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦))))
8170, 80mpbid 222 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦):(𝑥(Hom ‘(𝐶cat 𝐻))𝑦)⟶((((1st𝐹) ↾ dom dom 𝐻)‘𝑥)(Hom ‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑦)))
821adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝐹 ∈ (𝐶 Func 𝐷))
832adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝐻 ∈ (Subcat‘𝐶))
8434adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
8538eleq2d 2825 . . . . . . . 8 (𝜑 → (𝑥 ∈ dom dom 𝐻𝑥 ∈ (Base‘(𝐶cat 𝐻))))
8685biimpar 503 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝑥 ∈ dom dom 𝐻)
8782, 83, 84, 86, 86resf2nd 16756 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑥) = ((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥)))
88 eqid 2760 . . . . . . . 8 (Id‘𝐶) = (Id‘𝐶)
8923, 83, 84, 88, 86subcid 16708 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘𝐶)‘𝑥) = ((Id‘(𝐶cat 𝐻))‘𝑥))
9089eqcomd 2766 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘(𝐶cat 𝐻))‘𝑥) = ((Id‘𝐶)‘𝑥))
9187, 90fveq12d 6358 . . . . 5 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑥)‘((Id‘(𝐶cat 𝐻))‘𝑥)) = (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)))
9231adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
9338, 35eqsstr3d 3781 . . . . . . . 8 (𝜑 → (Base‘(𝐶cat 𝐻)) ⊆ (Base‘𝐶))
9493sselda 3744 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → 𝑥 ∈ (Base‘𝐶))
9528, 88, 20, 92, 94funcid 16731 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
9683, 84, 86, 88subcidcl 16705 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))
97 fvres 6368 . . . . . . 7 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) → (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)))
9896, 97syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)))
9986, 74syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
10099fveq2d 6356 . . . . . 6 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((Id‘𝐷)‘(((1st𝐹) ↾ dom dom 𝐻)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
10195, 98, 1003eqtr4d 2804 . . . . 5 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → (((𝑥(2nd𝐹)𝑥) ↾ (𝑥𝐻𝑥))‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(((1st𝐹) ↾ dom dom 𝐻)‘𝑥)))
10291, 101eqtrd 2794 . . . 4 ((𝜑𝑥 ∈ (Base‘(𝐶cat 𝐻))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑥)‘((Id‘(𝐶cat 𝐻))‘𝑥)) = ((Id‘𝐷)‘(((1st𝐹) ↾ dom dom 𝐻)‘𝑥)))
10323ad2ant1 1128 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐻 ∈ (Subcat‘𝐶))
104343ad2ant1 1128 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
105 simp21 1249 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘(𝐶cat 𝐻)))
106383ad2ant1 1128 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → dom dom 𝐻 = (Base‘(𝐶cat 𝐻)))
107105, 106eleqtrrd 2842 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑥 ∈ dom dom 𝐻)
108 eqid 2760 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
109 simp22 1250 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘(𝐶cat 𝐻)))
110109, 106eleqtrrd 2842 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑦 ∈ dom dom 𝐻)
111 simp23 1251 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘(𝐶cat 𝐻)))
112111, 106eleqtrrd 2842 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑧 ∈ dom dom 𝐻)
113 simp3l 1244 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦))
114713ad2ant1 1128 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐻 = (Hom ‘(𝐶cat 𝐻)))
115114oveqd 6830 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘(𝐶cat 𝐻))𝑦))
116113, 115eleqtrrd 2842 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
117 simp3r 1245 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))
118114oveqd 6830 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))
119117, 118eleqtrrd 2842 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
120103, 104, 107, 108, 110, 112, 116, 119subccocl 16706 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
121 fvres 6368 . . . . . . 7 ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧) → (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
122120, 121syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
123313ad2ant1 1128 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
124353ad2ant1 1128 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → dom dom 𝐻 ⊆ (Base‘𝐶))
125124, 107sseldd 3745 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑥 ∈ (Base‘𝐶))
126124, 110sseldd 3745 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑦 ∈ (Base‘𝐶))
127124, 112sseldd 3745 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑧 ∈ (Base‘𝐶))
128103, 104, 52, 107, 110subcss2 16704 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥𝐻𝑦) ⊆ (𝑥(Hom ‘𝐶)𝑦))
129128, 116sseldd 3745 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
130103, 104, 52, 110, 112subcss2 16704 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑦𝐻𝑧) ⊆ (𝑦(Hom ‘𝐶)𝑧))
131130, 119sseldd 3745 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
13228, 52, 108, 22, 123, 125, 126, 127, 129, 131funcco 16732 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
133122, 132eqtrd 2794 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
13413ad2ant1 1128 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷))
135134, 103, 104, 107, 112resf2nd 16756 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑧) = ((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧)))
13623, 28, 37, 34, 35, 108rescco 16693 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶cat 𝐻)))
1371363ad2ant1 1128 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (comp‘𝐶) = (comp‘(𝐶cat 𝐻)))
138137eqcomd 2766 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (comp‘(𝐶cat 𝐻)) = (comp‘𝐶))
139138oveqd 6830 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧))
140139oveqd 6830 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
141135, 140fveq12d 6358 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧)𝑓)) = (((𝑥(2nd𝐹)𝑧) ↾ (𝑥𝐻𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
142107, 74syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑥) = ((1st𝐹)‘𝑥))
143110, 76syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑦) = ((1st𝐹)‘𝑦))
144142, 143opeq12d 4561 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩)
145 fvres 6368 . . . . . . . 8 (𝑧 ∈ dom dom 𝐻 → (((1st𝐹) ↾ dom dom 𝐻)‘𝑧) = ((1st𝐹)‘𝑧))
146112, 145syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((1st𝐹) ↾ dom dom 𝐻)‘𝑧) = ((1st𝐹)‘𝑧))
147144, 146oveq12d 6831 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩(comp‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑧)) = (⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧)))
148134, 103, 104, 110, 112resf2nd 16756 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑦(2nd ‘(𝐹f 𝐻))𝑧) = ((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧)))
149148fveq1d 6354 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔) = (((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔))
150 fvres 6368 . . . . . . . 8 (𝑔 ∈ (𝑦𝐻𝑧) → (((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔) = ((𝑦(2nd𝐹)𝑧)‘𝑔))
151119, 150syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑦(2nd𝐹)𝑧) ↾ (𝑦𝐻𝑧))‘𝑔) = ((𝑦(2nd𝐹)𝑧)‘𝑔))
152149, 151eqtrd 2794 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔) = ((𝑦(2nd𝐹)𝑧)‘𝑔))
153134, 103, 104, 107, 110resf2nd 16756 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (𝑥(2nd ‘(𝐹f 𝐻))𝑦) = ((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦)))
154153fveq1d 6354 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓) = (((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓))
155 fvres 6368 . . . . . . . 8 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
156116, 155syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑥(2nd𝐹)𝑦) ↾ (𝑥𝐻𝑦))‘𝑓) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
157154, 156eqtrd 2794 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
158147, 152, 157oveq123d 6834 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → (((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔)(⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩(comp‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
159133, 141, 1583eqtr4d 2804 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑦 ∈ (Base‘(𝐶cat 𝐻)) ∧ 𝑧 ∈ (Base‘(𝐶cat 𝐻))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝐶cat 𝐻))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝐶cat 𝐻))𝑧))) → ((𝑥(2nd ‘(𝐹f 𝐻))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶cat 𝐻))𝑧)𝑓)) = (((𝑦(2nd ‘(𝐹f 𝐻))𝑧)‘𝑔)(⟨(((1st𝐹) ↾ dom dom 𝐻)‘𝑥), (((1st𝐹) ↾ dom dom 𝐻)‘𝑦)⟩(comp‘𝐷)(((1st𝐹) ↾ dom dom 𝐻)‘𝑧))((𝑥(2nd ‘(𝐹f 𝐻))𝑦)‘𝑓)))
16015, 16, 17, 18, 19, 20, 21, 22, 24, 27, 40, 51, 81, 102, 159isfuncd 16726 . . 3 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻)((𝐶cat 𝐻) Func 𝐷)(2nd ‘(𝐹f 𝐻)))
161 df-br 4805 . . 3 (((1st𝐹) ↾ dom dom 𝐻)((𝐶cat 𝐻) Func 𝐷)(2nd ‘(𝐹f 𝐻)) ↔ ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩ ∈ ((𝐶cat 𝐻) Func 𝐷))
162160, 161sylib 208 . 2 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (2nd ‘(𝐹f 𝐻))⟩ ∈ ((𝐶cat 𝐻) Func 𝐷))
16314, 162eqeltrd 2839 1 (𝜑 → (𝐹f 𝐻) ∈ ((𝐶cat 𝐻) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715  cop 4327   class class class wbr 4804  cmpt 4881   × cxp 5264  dom cdm 5266  cres 5268  Rel wrel 5271   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  1st c1st 7331  2nd c2nd 7332  Basecbs 16059  Hom chom 16154  compcco 16155  Catccat 16526  Idccid 16527  cat cresc 16669  Subcatcsubc 16670   Func cfunc 16715  f cresf 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-hom 16168  df-cco 16169  df-cat 16530  df-cid 16531  df-homf 16532  df-ssc 16671  df-resc 16672  df-subc 16673  df-func 16719  df-resf 16722
This theorem is referenced by:  funcrngcsetc  42508  funcringcsetc  42545
  Copyright terms: Public domain W3C validator