![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 16711 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑𝑚 ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | elmpt2cl 7033 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∀wral 3042 [wsbc 3568 〈cop 4319 {copab 4856 × cxp 5256 ⟶wf 6037 ‘cfv 6041 (class class class)co 6805 1st c1st 7323 2nd c2nd 7324 ↑𝑚 cmap 8015 Xcixp 8066 Basecbs 16051 Hom chom 16146 compcco 16147 Catccat 16518 Idccid 16519 Func cfunc 16707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-xp 5264 df-dm 5268 df-iota 6004 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-func 16711 |
This theorem is referenced by: funcf1 16719 funcixp 16720 funcid 16723 funcco 16724 funcsect 16725 funcinv 16726 funciso 16727 funcoppc 16728 cofucl 16741 cofulid 16743 cofurid 16744 funcres 16749 funcres2b 16750 funcpropd 16753 funcres2c 16754 isfull 16763 isfth 16767 fthsect 16778 fthinv 16779 fthmon 16780 fthepi 16781 ffthiso 16782 natfval 16799 fucbas 16813 fuchom 16814 fucco 16815 fuccocl 16817 fucidcl 16818 fuclid 16819 fucrid 16820 fucass 16821 fucid 16824 fucsect 16825 fucinv 16826 invfuc 16827 fuciso 16828 funcsetcres2 16936 prfcl 17036 prf1st 17037 prf2nd 17038 curf1cl 17061 curfcl 17065 uncfval 17067 uncfcl 17068 uncf1 17069 uncf2 17070 curfuncf 17071 uncfcurf 17072 yonffthlem 17115 yoneda 17116 |
Copyright terms: Public domain | W3C validator |