MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funco Structured version   Visualization version   GIF version

Theorem funco 5916
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmo 5892 . . . . 5 (Fun 𝐺 → ∃*𝑧 𝑥𝐺𝑧)
2 funmo 5892 . . . . . 6 (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦)
32alrimiv 1853 . . . . 5 (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦)
4 moexexv 2540 . . . . 5 ((∃*𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
51, 3, 4syl2anr 495 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
65alrimiv 1853 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
7 funopab 5911 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)} ↔ ∀𝑥∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
86, 7sylibr 224 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
9 df-co 5113 . . 3 (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)}
109funeqi 5897 . 2 (Fun (𝐹𝐺) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
118, 10sylibr 224 1 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1479  wex 1702  ∃*wmo 2469   class class class wbr 4644  {copab 4703  ccom 5108  Fun wfun 5870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-fun 5878
This theorem is referenced by:  fnco  5987  f1co  6097  curry1  7254  curry2  7257  tposfun  7353  fsuppco  8292  fsuppco2  8293  fsuppcor  8294  fin23lem30  9149  smobeth  9393  hashkf  13102  xppreima  29422  smatrcl  29836  comptiunov2i  37817  fco3  39237  hoicvr  40525  funresfunco  40968
  Copyright terms: Public domain W3C validator