MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvtp Structured version   Visualization version   GIF version

Theorem funcnvtp 5989
Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
funcnvtp (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})

Proof of Theorem funcnvtp
StepHypRef Expression
1 simp1 1081 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐴𝑈)
2 simp2 1082 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐶𝑉)
3 simp1 1081 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → 𝐵𝐷)
4 funcnvpr 5988 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
51, 2, 3, 4syl2an3an 1426 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
6 funcnvsn 5974 . . . 4 Fun {⟨𝐸, 𝐹⟩}
76a1i 11 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐸, 𝐹⟩})
8 df-rn 5154 . . . . . . 7 ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
9 rnpropg 5651 . . . . . . 7 ((𝐴𝑈𝐶𝑉) → ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
108, 9syl5eqr 2699 . . . . . 6 ((𝐴𝑈𝐶𝑉) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
11103adant3 1101 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
12 df-rn 5154 . . . . . . 7 ran {⟨𝐸, 𝐹⟩} = dom {⟨𝐸, 𝐹⟩}
13 rnsnopg 5650 . . . . . . 7 (𝐸𝑊 → ran {⟨𝐸, 𝐹⟩} = {𝐹})
1412, 13syl5eqr 2699 . . . . . 6 (𝐸𝑊 → dom {⟨𝐸, 𝐹⟩} = {𝐹})
15143ad2ant3 1104 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐸, 𝐹⟩} = {𝐹})
1611, 15ineq12d 3848 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ({𝐵, 𝐷} ∩ {𝐹}))
17 disjprsn 4282 . . . . 5 ((𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
18173adant1 1099 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
1916, 18sylan9eq 2705 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅)
20 funun 5970 . . 3 (((Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∧ Fun {⟨𝐸, 𝐹⟩}) ∧ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
215, 7, 19, 20syl21anc 1365 . 2 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
22 df-tp 4215 . . . . 5 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2322cnveqi 5329 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
24 cnvun 5573 . . . 4 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2523, 24eqtri 2673 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2625funeqi 5947 . 2 (Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
2721, 26sylibr 224 1 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  cun 3605  cin 3606  c0 3948  {csn 4210  {cpr 4212  {ctp 4214  cop 4216  ccnv 5142  dom cdm 5143  ran crn 5144  Fun wfun 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-fun 5928
This theorem is referenced by:  funcnvs3  13705
  Copyright terms: Public domain W3C validator