![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvres2 | Structured version Visualization version GIF version |
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.) |
Ref | Expression |
---|---|
funcnvres2 | ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvcnv 6069 | . . 3 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
2 | funcnvres 6080 | . . 3 ⊢ (Fun ◡◡𝐹 → ◡(◡𝐹 ↾ 𝐴) = (◡◡𝐹 ↾ (◡𝐹 “ 𝐴))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (◡◡𝐹 ↾ (◡𝐹 “ 𝐴))) |
4 | funrel 6018 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | dfrel2 5693 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
6 | 4, 5 | sylib 208 | . . 3 ⊢ (Fun 𝐹 → ◡◡𝐹 = 𝐹) |
7 | 6 | reseq1d 5502 | . 2 ⊢ (Fun 𝐹 → (◡◡𝐹 ↾ (◡𝐹 “ 𝐴)) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
8 | 3, 7 | eqtrd 2758 | 1 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ◡ccnv 5217 ↾ cres 5220 “ cima 5221 Rel wrel 5223 Fun wfun 5995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-fun 6003 |
This theorem is referenced by: funimacnv 6083 foimacnv 6267 unbenlem 15735 ofco2 20380 dvlog 24517 fresf1o 29663 |
Copyright terms: Public domain | W3C validator |