MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvqpOLD Structured version   Visualization version   GIF version

Theorem funcnvqpOLD 5991
Description: Obsolete proof of funcnvqp 5990 as of 14-Jul-2021. (Contributed by AV, 23-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
funcnvqpOLD ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))

Proof of Theorem funcnvqpOLD
StepHypRef Expression
1 simpl 472 . . . . 5 ((𝐴𝑈𝐶𝑉) → 𝐴𝑈)
21adantr 480 . . . 4 (((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) → 𝐴𝑈)
3 simpr 476 . . . . 5 ((𝐴𝑈𝐶𝑉) → 𝐶𝑉)
43adantr 480 . . . 4 (((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) → 𝐶𝑉)
5 simp11 1111 . . . 4 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻) → 𝐵𝐷)
6 funcnvpr 5988 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
72, 4, 5, 6syl2an3an 1426 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
8 simpl 472 . . . . 5 ((𝐸𝑊𝐺𝑇) → 𝐸𝑊)
98adantl 481 . . . 4 (((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) → 𝐸𝑊)
10 simpr 476 . . . . 5 ((𝐸𝑊𝐺𝑇) → 𝐺𝑇)
1110adantl 481 . . . 4 (((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) → 𝐺𝑇)
12 simp3 1083 . . . 4 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻) → 𝐹𝐻)
13 funcnvpr 5988 . . . 4 ((𝐸𝑊𝐺𝑇𝐹𝐻) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
149, 11, 12, 13syl2an3an 1426 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
15 df-rn 5154 . . . . . 6 ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
16 rnpropg 5651 . . . . . 6 ((𝐴𝑈𝐶𝑉) → ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
1715, 16syl5eqr 2699 . . . . 5 ((𝐴𝑈𝐶𝑉) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
18 df-rn 5154 . . . . . 6 ran {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}
19 rnpropg 5651 . . . . . 6 ((𝐸𝑊𝐺𝑇) → ran {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = {𝐹, 𝐻})
2018, 19syl5eqr 2699 . . . . 5 ((𝐸𝑊𝐺𝑇) → dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = {𝐹, 𝐻})
2117, 20ineqan12d 3849 . . . 4 (((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ({𝐵, 𝐷} ∩ {𝐹, 𝐻}))
22 simp2 1082 . . . . . . 7 ((𝐵𝐷𝐵𝐹𝐵𝐻) → 𝐵𝐹)
23 simpl 472 . . . . . . 7 ((𝐷𝐹𝐷𝐻) → 𝐷𝐹)
2422, 23anim12i 589 . . . . . 6 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻)) → (𝐵𝐹𝐷𝐹))
25243adant3 1101 . . . . 5 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻) → (𝐵𝐹𝐷𝐹))
26 simp3 1083 . . . . . . 7 ((𝐵𝐷𝐵𝐹𝐵𝐻) → 𝐵𝐻)
27 simpr 476 . . . . . . 7 ((𝐷𝐹𝐷𝐻) → 𝐷𝐻)
2826, 27anim12i 589 . . . . . 6 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻)) → (𝐵𝐻𝐷𝐻))
29283adant3 1101 . . . . 5 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻) → (𝐵𝐻𝐷𝐻))
30 disjpr2 4280 . . . . 5 (((𝐵𝐹𝐷𝐹) ∧ (𝐵𝐻𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
3125, 29, 30syl2anc 694 . . . 4 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
3221, 31sylan9eq 2705 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ∅)
33 funun 5970 . . 3 (((Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∧ Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) ∧ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
347, 14, 32, 33syl21anc 1365 . 2 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
35 cnvun 5573 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
3635funeqi 5947 . 2 (Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) ↔ Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
3734, 36sylibr 224 1 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  cun 3605  cin 3606  c0 3948  {cpr 4212  cop 4216  ccnv 5142  dom cdm 5143  ran crn 5144  Fun wfun 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-fun 5928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator