Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnvmptOLD Structured version   Visualization version   GIF version

Theorem funcnvmptOLD 29801
 Description: Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
funcnvmptOLD (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem funcnvmptOLD
StepHypRef Expression
1 relcnv 5644 . . . 4 Rel 𝐹
2 nfcv 2912 . . . . 5 𝑦𝐹
3 funcnvmpt.2 . . . . . 6 𝑥𝐹
43nfcnv 5439 . . . . 5 𝑥𝐹
52, 4dffun6f 6045 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑦∃*𝑥 𝑦𝐹𝑥))
61, 5mpbiran 680 . . 3 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑦𝐹𝑥)
7 vex 3352 . . . . . 6 𝑦 ∈ V
8 vex 3352 . . . . . 6 𝑥 ∈ V
97, 8brcnv 5443 . . . . 5 (𝑦𝐹𝑥𝑥𝐹𝑦)
109mobii 2640 . . . 4 (∃*𝑥 𝑦𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦)
1110albii 1894 . . 3 (∀𝑦∃*𝑥 𝑦𝐹𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
126, 11bitri 264 . 2 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
13 nfv 1994 . . 3 𝑦𝜑
14 funcnvmpt.0 . . . 4 𝑥𝜑
15 funmpt 6069 . . . . . . . . 9 Fun (𝑥𝐴𝐵)
16 funcnvmpt.3 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
1716funeqi 6052 . . . . . . . . 9 (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵))
1815, 17mpbir 221 . . . . . . . 8 Fun 𝐹
19 funbrfv2b 6382 . . . . . . . 8 (Fun 𝐹 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦)))
2018, 19ax-mp 5 . . . . . . 7 (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦))
21 funcnvmpt.4 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵𝑉)
22 elex 3361 . . . . . . . . . . . . . 14 (𝐵𝑉𝐵 ∈ V)
2321, 22syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
2423ex 397 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵 ∈ V))
2514, 24ralrimi 3105 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐵 ∈ V)
26 funcnvmpt.1 . . . . . . . . . . . 12 𝑥𝐴
2726rabid2f 3267 . . . . . . . . . . 11 (𝐴 = {𝑥𝐴𝐵 ∈ V} ↔ ∀𝑥𝐴 𝐵 ∈ V)
2825, 27sylibr 224 . . . . . . . . . 10 (𝜑𝐴 = {𝑥𝐴𝐵 ∈ V})
2916dmmpt 5774 . . . . . . . . . 10 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3028, 29syl6reqr 2823 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
3130eleq2d 2835 . . . . . . . 8 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
3231anbi1d 607 . . . . . . 7 (𝜑 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
3320, 32syl5bb 272 . . . . . 6 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
3433bian1d 29640 . . . . 5 (𝜑 → ((𝑥𝐴𝑥𝐹𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
3516fveq1i 6333 . . . . . . . . . 10 (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥)
36 simpr 471 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
3726fvmpt2f 6425 . . . . . . . . . . 11 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3836, 21, 37syl2anc 565 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3935, 38syl5eq 2816 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4039eqeq2d 2780 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = 𝐵))
4131biimpar 463 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐹)
42 funbrfvb 6379 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
4318, 41, 42sylancr 567 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
44 eqcom 2777 . . . . . . . . . . 11 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
4544bibi1i 327 . . . . . . . . . 10 (((𝐹𝑥) = 𝑦𝑥𝐹𝑦) ↔ (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
4645imbi2i 325 . . . . . . . . 9 (((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦)) ↔ ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦)))
4743, 46mpbi 220 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
4840, 47bitr3d 270 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑥𝐹𝑦))
4948ex 397 . . . . . 6 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐵𝑥𝐹𝑦)))
5049pm5.32d 558 . . . . 5 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑥𝐹𝑦)))
5134, 50, 333bitr4rd 301 . . . 4 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐵)))
5214, 51mobid 2636 . . 3 (𝜑 → (∃*𝑥 𝑥𝐹𝑦 ↔ ∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
5313, 52albid 2245 . 2 (𝜑 → (∀𝑦∃*𝑥 𝑥𝐹𝑦 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
5412, 53syl5bb 272 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382  ∀wal 1628   = wceq 1630  Ⅎwnf 1855   ∈ wcel 2144  ∃*wmo 2618  Ⅎwnfc 2899  ∀wral 3060  {crab 3064  Vcvv 3349   class class class wbr 4784   ↦ cmpt 4861  ◡ccnv 5248  dom cdm 5249  Rel wrel 5254  Fun wfun 6025  ‘cfv 6031 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-fv 6039 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator