![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvcnv | Structured version Visualization version GIF version |
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
Ref | Expression |
---|---|
funcnvcnv | ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvss 5730 | . 2 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
2 | funss 6050 | . 2 ⊢ (◡◡𝐴 ⊆ 𝐴 → (Fun 𝐴 → Fun ◡◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3721 ◡ccnv 5248 Fun wfun 6025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-fun 6033 |
This theorem is referenced by: funcnvres2 6109 inpreima 6485 difpreima 6486 f1oresrab 6537 sbthlem8 8232 fin1a2lem7 9429 strlemor0OLD 16175 cnclima 21292 iscncl 21293 qtopcld 21736 qtoprest 21740 qtopcmap 21742 rnelfmlem 21975 fmfnfmlem3 21979 mbfimaicc 23618 ismbf3d 23640 i1fd 23667 gsummpt2co 30114 |
Copyright terms: Public domain | W3C validator |