Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnv5mpt Structured version   Visualization version   GIF version

Theorem funcnv5mpt 29597
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 1-Mar-2017.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
funcnv5mpt.1 (𝑥 = 𝑧𝐵 = 𝐶)
Assertion
Ref Expression
funcnv5mpt (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶)))
Distinct variable groups:   𝑥,𝑧   𝜑,𝑧   𝑧,𝐴   𝑧,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑧)   𝐹(𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem funcnv5mpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funcnvmpt.0 . . 3 𝑥𝜑
2 funcnvmpt.1 . . 3 𝑥𝐴
3 funcnvmpt.2 . . 3 𝑥𝐹
4 funcnvmpt.3 . . 3 𝐹 = (𝑥𝐴𝐵)
5 funcnvmpt.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
61, 2, 3, 4, 5funcnvmpt 29596 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
7 nne 2827 . . . . . . . . 9 𝐵𝐶𝐵 = 𝐶)
8 eqvincg 3360 . . . . . . . . . 10 (𝐵𝑉 → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
95, 8syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
107, 9syl5bb 272 . . . . . . . 8 ((𝜑𝑥𝐴) → (¬ 𝐵𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
1110imbi1d 330 . . . . . . 7 ((𝜑𝑥𝐴) → ((¬ 𝐵𝐶𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
12 orcom 401 . . . . . . . 8 ((𝑥 = 𝑧𝐵𝐶) ↔ (𝐵𝐶𝑥 = 𝑧))
13 df-or 384 . . . . . . . 8 ((𝐵𝐶𝑥 = 𝑧) ↔ (¬ 𝐵𝐶𝑥 = 𝑧))
1412, 13bitri 264 . . . . . . 7 ((𝑥 = 𝑧𝐵𝐶) ↔ (¬ 𝐵𝐶𝑥 = 𝑧))
15 19.23v 1911 . . . . . . 7 (∀𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
1611, 14, 153bitr4g 303 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
1716ralbidv 3015 . . . . 5 ((𝜑𝑥𝐴) → (∀𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑧𝐴𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
18 ralcom4 3255 . . . . 5 (∀𝑧𝐴𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
1917, 18syl6bb 276 . . . 4 ((𝜑𝑥𝐴) → (∀𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
201, 19ralbida 3011 . . 3 (𝜑 → (∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
21 nfcv 2793 . . . . . 6 𝑧𝐴
22 nfv 1883 . . . . . 6 𝑥 𝑦 = 𝐶
23 funcnv5mpt.1 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝐶)
2423eqeq2d 2661 . . . . . 6 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝐶))
252, 21, 22, 24rmo4f 29464 . . . . 5 (∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2625albii 1787 . . . 4 (∀𝑦∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑦𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
27 ralcom4 3255 . . . 4 (∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2826, 27bitr4i 267 . . 3 (∀𝑦∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2920, 28syl6bbr 278 . 2 (𝜑 → (∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
306, 29bitr4d 271 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  wal 1521   = wceq 1523  wex 1744  wnf 1748  wcel 2030  wnfc 2780  wne 2823  wral 2941  ∃*wrmo 2944  cmpt 4762  ccnv 5142  Fun wfun 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934
This theorem is referenced by:  funcnv4mpt  29598
  Copyright terms: Public domain W3C validator