![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcnv4mpt | Structured version Visualization version GIF version |
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
Ref | Expression |
---|---|
funcnvmpt.0 | ⊢ Ⅎ𝑥𝜑 |
funcnvmpt.1 | ⊢ Ⅎ𝑥𝐴 |
funcnvmpt.2 | ⊢ Ⅎ𝑥𝐹 |
funcnvmpt.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
funcnvmpt.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
funcnv4mpt | ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑖𝜑 | |
2 | nfcv 2793 | . 2 ⊢ Ⅎ𝑖𝐴 | |
3 | nfcv 2793 | . 2 ⊢ Ⅎ𝑖𝐹 | |
4 | funcnvmpt.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | funcnvmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
6 | nfcv 2793 | . . . 4 ⊢ Ⅎ𝑖𝐵 | |
7 | nfcsb1v 3582 | . . . 4 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
8 | csbeq1a 3575 | . . . 4 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
9 | 5, 2, 6, 7, 8 | cbvmptf 4781 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑥⦌𝐵) |
10 | 4, 9 | eqtri 2673 | . 2 ⊢ 𝐹 = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑥⦌𝐵) |
11 | funcnvmpt.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
12 | 11 | sbimi 1943 | . . 3 ⊢ ([𝑖 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) → [𝑖 / 𝑥]𝐵 ∈ 𝑉) |
13 | funcnvmpt.0 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
14 | nfcv 2793 | . . . . . 6 ⊢ Ⅎ𝑥𝑖 | |
15 | 14, 5 | nfel 2806 | . . . . 5 ⊢ Ⅎ𝑥 𝑖 ∈ 𝐴 |
16 | 13, 15 | nfan 1868 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑖 ∈ 𝐴) |
17 | eleq1 2718 | . . . . 5 ⊢ (𝑥 = 𝑖 → (𝑥 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) | |
18 | 17 | anbi2d 740 | . . . 4 ⊢ (𝑥 = 𝑖 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴))) |
19 | 16, 18 | sbie 2436 | . . 3 ⊢ ([𝑖 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴)) |
20 | nfcv 2793 | . . . . 5 ⊢ Ⅎ𝑥𝑉 | |
21 | 7, 20 | nfel 2806 | . . . 4 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉 |
22 | 8 | eleq1d 2715 | . . . 4 ⊢ (𝑥 = 𝑖 → (𝐵 ∈ 𝑉 ↔ ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉)) |
23 | 21, 22 | sbie 2436 | . . 3 ⊢ ([𝑖 / 𝑥]𝐵 ∈ 𝑉 ↔ ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉) |
24 | 12, 19, 23 | 3imtr3i 280 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉) |
25 | csbeq1 3569 | . 2 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
26 | 1, 2, 3, 10, 24, 25 | funcnv5mpt 29597 | 1 ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 [wsb 1937 ∈ wcel 2030 Ⅎwnfc 2780 ≠ wne 2823 ∀wral 2941 ⦋csb 3566 ↦ cmpt 4762 ◡ccnv 5142 Fun wfun 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 |
This theorem is referenced by: disjdsct 29608 |
Copyright terms: Public domain | W3C validator |