MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv3 Structured version   Visualization version   GIF version

Theorem funcnv3 6118
Description: A condition showing a class is single-rooted. (See funcnv 6117). (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
funcnv3 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv3
StepHypRef Expression
1 dfrn2 5464 . . . . . 6 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
21abeq2i 2871 . . . . 5 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦)
32biimpi 206 . . . 4 (𝑦 ∈ ran 𝐴 → ∃𝑥 𝑥𝐴𝑦)
43biantrurd 530 . . 3 (𝑦 ∈ ran 𝐴 → (∃*𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)))
54ralbiia 3115 . 2 (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
6 funcnv 6117 . 2 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
7 df-reu 3055 . . . 4 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
8 vex 3341 . . . . . . 7 𝑥 ∈ V
9 vex 3341 . . . . . . 7 𝑦 ∈ V
108, 9breldm 5482 . . . . . 6 (𝑥𝐴𝑦𝑥 ∈ dom 𝐴)
1110pm4.71ri 668 . . . . 5 (𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
1211eubii 2627 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
13 eu5 2631 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
147, 12, 133bitr2i 288 . . 3 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
1514ralbii 3116 . 2 (∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
165, 6, 153bitr4i 292 1 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wex 1851  wcel 2137  ∃!weu 2605  ∃*wmo 2606  wral 3048  ∃!wreu 3050   class class class wbr 4802  ccnv 5263  dom cdm 5264  ran crn 5265  Fun wfun 6041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pr 5053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ral 3053  df-reu 3055  df-rab 3057  df-v 3340  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-op 4326  df-br 4803  df-opab 4863  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-fun 6049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator