![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcinv | Structured version Visualization version GIF version |
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funcinv.b | ⊢ 𝐵 = (Base‘𝐷) |
funcinv.s | ⊢ 𝐼 = (Inv‘𝐷) |
funcinv.t | ⊢ 𝐽 = (Inv‘𝐸) |
funcinv.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funcinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funcinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
funcinv.m | ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) |
Ref | Expression |
---|---|
funcinv | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
2 | eqid 2771 | . . 3 ⊢ (Sect‘𝐷) = (Sect‘𝐷) | |
3 | eqid 2771 | . . 3 ⊢ (Sect‘𝐸) = (Sect‘𝐸) | |
4 | funcinv.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
5 | funcinv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | funcinv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | funcinv.m | . . . . 5 ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) | |
8 | funcinv.s | . . . . . 6 ⊢ 𝐼 = (Inv‘𝐷) | |
9 | df-br 4787 | . . . . . . . . 9 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
10 | 4, 9 | sylib 208 | . . . . . . . 8 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
11 | funcrcl 16730 | . . . . . . . 8 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
13 | 12 | simpld 482 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) |
14 | 1, 8, 13, 5, 6, 2 | isinv 16627 | . . . . 5 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀))) |
15 | 7, 14 | mpbid 222 | . . . 4 ⊢ (𝜑 → (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀)) |
16 | 15 | simpld 482 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Sect‘𝐷)𝑌)𝑁) |
17 | 1, 2, 3, 4, 5, 6, 16 | funcsect 16739 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
18 | 15 | simprd 483 | . . 3 ⊢ (𝜑 → 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀) |
19 | 1, 2, 3, 4, 6, 5, 18 | funcsect 16739 | . 2 ⊢ (𝜑 → ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) |
20 | eqid 2771 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
21 | funcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝐸) | |
22 | 12 | simprd 483 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
23 | 1, 20, 4 | funcf1 16733 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
24 | 23, 5 | ffvelrnd 6503 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
25 | 23, 6 | ffvelrnd 6503 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
26 | 20, 21, 22, 24, 25, 3 | isinv 16627 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
27 | 17, 19, 26 | mpbir2and 692 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 〈cop 4322 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 Catccat 16532 Sectcsect 16611 Invcinv 16612 Func cfunc 16721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-map 8011 df-ixp 8063 df-sect 16614 df-inv 16615 df-func 16725 |
This theorem is referenced by: funciso 16741 |
Copyright terms: Public domain | W3C validator |