Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcf1 Structured version   Visualization version   GIF version

Theorem funcf1 16573
 Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcf1.b 𝐵 = (Base‘𝐷)
funcf1.c 𝐶 = (Base‘𝐸)
funcf1.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
funcf1 (𝜑𝐹:𝐵𝐶)

Proof of Theorem funcf1
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcf1.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2 funcf1.b . . . 4 𝐵 = (Base‘𝐷)
3 funcf1.c . . . 4 𝐶 = (Base‘𝐸)
4 eqid 2651 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2651 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
6 eqid 2651 . . . 4 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2651 . . . 4 (Id‘𝐸) = (Id‘𝐸)
8 eqid 2651 . . . 4 (comp‘𝐷) = (comp‘𝐷)
9 eqid 2651 . . . 4 (comp‘𝐸) = (comp‘𝐸)
10 df-br 4686 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
111, 10sylib 208 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
12 funcrcl 16570 . . . . . 6 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . 5 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simpld 474 . . . 4 (𝜑𝐷 ∈ Cat)
1513simprd 478 . . . 4 (𝜑𝐸 ∈ Cat)
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 16571 . . 3 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
171, 16mpbid 222 . 2 (𝜑 → (𝐹:𝐵𝐶𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))
1817simp1d 1093 1 (𝜑𝐹:𝐵𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ⟨cop 4216   class class class wbr 4685   × cxp 5141  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209   ↑𝑚 cmap 7899  Xcixp 7950  Basecbs 15904  Hom chom 15999  compcco 16000  Catccat 16372  Idccid 16373   Func cfunc 16561 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-ixp 7951  df-func 16565 This theorem is referenced by:  funcsect  16579  funcinv  16580  funciso  16581  funcoppc  16582  cofu1  16591  cofucl  16595  cofuass  16596  cofulid  16597  cofurid  16598  funcres  16603  funcres2  16605  wunfunc  16606  funcres2c  16608  fullpropd  16627  fthsect  16632  fthinv  16633  fthmon  16634  ffthiso  16636  cofull  16641  cofth  16642  fuccocl  16671  fucidcl  16672  fuclid  16673  fucrid  16674  fucass  16675  fucsect  16679  fucinv  16680  invfuc  16681  fuciso  16682  natpropd  16683  fucpropd  16684  catciso  16804  prfval  16886  prfcl  16890  prf1st  16891  prf2nd  16892  1st2ndprf  16893  evlfcllem  16908  evlfcl  16909  curf1cl  16915  curfcl  16919  uncf1  16923  uncf2  16924  curfuncf  16925  uncfcurf  16926  diag1cl  16929  curf2ndf  16934  yon1cl  16950  oyon1cl  16958  yonedalem3a  16961  yonedalem4c  16964  yonedalem3b  16966  yonedalem3  16967  yonedainv  16968  yonffthlem  16969  yoniso  16972
 Copyright terms: Public domain W3C validator