MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem7 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem7 16987
Description: Lemma 7 for funcestrcsetc 16990. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem7 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem7
StepHypRef Expression
1 funcestrcsetc.e . . . . 5 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . . . 5 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . . . 5 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . . . 5 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . . . 5 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . . . 5 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . . . 5 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
8 eqid 2760 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
91, 2, 3, 4, 5, 6, 7, 8, 8funcestrcsetclem5 16985 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑋𝐵)) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋))))
109anabsan2 898 . . 3 ((𝜑𝑋𝐵) → (𝑋𝐺𝑋) = ( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋))))
11 eqid 2760 . . . 4 (Id‘𝐸) = (Id‘𝐸)
125adantr 472 . . . 4 ((𝜑𝑋𝐵) → 𝑈 ∈ WUni)
131, 5estrcbas 16966 . . . . . . 7 (𝜑𝑈 = (Base‘𝐸))
1413, 3syl6reqr 2813 . . . . . 6 (𝜑𝐵 = 𝑈)
1514eleq2d 2825 . . . . 5 (𝜑 → (𝑋𝐵𝑋𝑈))
1615biimpa 502 . . . 4 ((𝜑𝑋𝐵) → 𝑋𝑈)
171, 11, 12, 16estrcid 16975 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝐸)‘𝑋) = ( I ↾ (Base‘𝑋)))
1810, 17fveq12d 6358 . 2 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = (( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)))‘( I ↾ (Base‘𝑋))))
19 fvex 6362 . . . . 5 (Base‘𝑋) ∈ V
2019, 19pm3.2i 470 . . . 4 ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V)
2120a1i 11 . . 3 ((𝜑𝑋𝐵) → ((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V))
22 f1oi 6335 . . . . 5 ( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋)
23 f1of 6298 . . . . 5 (( I ↾ (Base‘𝑋)):(Base‘𝑋)–1-1-onto→(Base‘𝑋) → ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋))
2422, 23ax-mp 5 . . . 4 ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)
25 elmapg 8036 . . . 4 (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)) ↔ ( I ↾ (Base‘𝑋)):(Base‘𝑋)⟶(Base‘𝑋)))
2624, 25mpbiri 248 . . 3 (((Base‘𝑋) ∈ V ∧ (Base‘𝑋) ∈ V) → ( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)))
27 fvresi 6603 . . 3 (( I ↾ (Base‘𝑋)) ∈ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)) → (( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
2821, 26, 273syl 18 . 2 ((𝜑𝑋𝐵) → (( I ↾ ((Base‘𝑋) ↑𝑚 (Base‘𝑋)))‘( I ↾ (Base‘𝑋))) = ( I ↾ (Base‘𝑋)))
291, 2, 3, 4, 5, 6funcestrcsetclem1 16981 . . . 4 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
3029fveq2d 6356 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(𝐹𝑋)) = ((Id‘𝑆)‘(Base‘𝑋)))
31 eqid 2760 . . . 4 (Id‘𝑆) = (Id‘𝑆)
321, 3, 5estrcbasbas 16972 . . . 4 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ 𝑈)
332, 31, 12, 32setcid 16937 . . 3 ((𝜑𝑋𝐵) → ((Id‘𝑆)‘(Base‘𝑋)) = ( I ↾ (Base‘𝑋)))
3430, 33eqtr2d 2795 . 2 ((𝜑𝑋𝐵) → ( I ↾ (Base‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
3518, 28, 343eqtrd 2798 1 ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cmpt 4881   I cid 5173  cres 5268  wf 6045  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813  cmpt2 6815  𝑚 cmap 8023  WUnicwun 9714  Basecbs 16059  Idccid 16527  SetCatcsetc 16926  ExtStrCatcestrc 16963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-wun 9716  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-hom 16168  df-cco 16169  df-cat 16530  df-cid 16531  df-setc 16927  df-estrc 16964
This theorem is referenced by:  funcestrcsetc  16990
  Copyright terms: Public domain W3C validator