![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funbrfv2b | Structured version Visualization version GIF version |
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
funbrfv2b | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5943 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | releldm 5390 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹) | |
3 | 2 | ex 449 | . . . 4 ⊢ (Rel 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → 𝐴 ∈ dom 𝐹)) |
5 | 4 | pm4.71rd 668 | . 2 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
6 | funbrfvb 6276 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | |
7 | 6 | pm5.32da 674 | . 2 ⊢ (Fun 𝐹 → ((𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵) ↔ (𝐴 ∈ dom 𝐹 ∧ 𝐴𝐹𝐵))) |
8 | 5, 7 | bitr4d 271 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 dom cdm 5143 Rel wrel 5148 Fun wfun 5920 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 |
This theorem is referenced by: brtpos2 7403 mpt2curryd 7440 xpcomco 8091 fseqenlem2 8886 fpwwe2 9503 joinfval 17048 joinfval2 17049 meetfval 17062 meetfval2 17063 tayl0 24161 ofpreima 29593 funcnvmptOLD 29595 funcnvmpt 29596 curf 33517 uncf 33518 curunc 33521 fperdvper 40451 |
Copyright terms: Public domain | W3C validator |