MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funbrfv2b Structured version   Visualization version   GIF version

Theorem funbrfv2b 6279
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
funbrfv2b (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))

Proof of Theorem funbrfv2b
StepHypRef Expression
1 funrel 5943 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 releldm 5390 . . . . 5 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
32ex 449 . . . 4 (Rel 𝐹 → (𝐴𝐹𝐵𝐴 ∈ dom 𝐹))
41, 3syl 17 . . 3 (Fun 𝐹 → (𝐴𝐹𝐵𝐴 ∈ dom 𝐹))
54pm4.71rd 668 . 2 (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹𝐴𝐹𝐵)))
6 funbrfvb 6276 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
76pm5.32da 674 . 2 (Fun 𝐹 → ((𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵) ↔ (𝐴 ∈ dom 𝐹𝐴𝐹𝐵)))
85, 7bitr4d 271 1 (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  dom cdm 5143  Rel wrel 5148  Fun wfun 5920  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934
This theorem is referenced by:  brtpos2  7403  mpt2curryd  7440  xpcomco  8091  fseqenlem2  8886  fpwwe2  9503  joinfval  17048  joinfval2  17049  meetfval  17062  meetfval2  17063  tayl0  24161  ofpreima  29593  funcnvmptOLD  29595  funcnvmpt  29596  curf  33517  uncf  33518  curunc  33521  fperdvper  40451
  Copyright terms: Public domain W3C validator