![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2dmnop0 | Structured version Visualization version GIF version |
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 13490 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 16092. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
fun2dmnop.a | ⊢ 𝐴 ∈ V |
fun2dmnop.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fun2dmnop0 | ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1228 | . . . 4 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → Fun (𝐺 ∖ {∅})) | |
2 | dmexg 7264 | . . . . . 6 ⊢ (𝐺 ∈ V → dom 𝐺 ∈ V) | |
3 | 2 | adantl 473 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → dom 𝐺 ∈ V) |
4 | fun2dmnop.a | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
5 | fun2dmnop.b | . . . . . . . . 9 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | prss 4497 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) ↔ {𝐴, 𝐵} ⊆ dom 𝐺) |
7 | simpl 474 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 ∈ dom 𝐺) | |
8 | 6, 7 | sylbir 225 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ⊆ dom 𝐺 → 𝐴 ∈ dom 𝐺) |
9 | 8 | 3ad2ant3 1130 | . . . . . 6 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐴 ∈ dom 𝐺) |
10 | 9 | adantr 472 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴 ∈ dom 𝐺) |
11 | simpr 479 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐵 ∈ dom 𝐺) | |
12 | 6, 11 | sylbir 225 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ⊆ dom 𝐺 → 𝐵 ∈ dom 𝐺) |
13 | 12 | 3ad2ant3 1130 | . . . . . 6 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐵 ∈ dom 𝐺) |
14 | 13 | adantr 472 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐵 ∈ dom 𝐺) |
15 | simpl2 1230 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴 ≠ 𝐵) | |
16 | 3, 10, 14, 15 | nehash2 13469 | . . . 4 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 2 ≤ (♯‘dom 𝐺)) |
17 | fundmge2nop0 13487 | . . . 4 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V)) | |
18 | 1, 16, 17 | syl2anc 696 | . . 3 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → ¬ 𝐺 ∈ (V × V)) |
19 | 18 | ex 449 | . 2 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))) |
20 | prcnel 3359 | . 2 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
21 | 19, 20 | pm2.61d1 171 | 1 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2140 ≠ wne 2933 Vcvv 3341 ∖ cdif 3713 ⊆ wss 3716 ∅c0 4059 {csn 4322 {cpr 4324 class class class wbr 4805 × cxp 5265 dom cdm 5267 Fun wfun 6044 ‘cfv 6050 ≤ cle 10288 2c2 11283 ♯chash 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-n0 11506 df-xnn0 11577 df-z 11591 df-uz 11901 df-fz 12541 df-hash 13333 |
This theorem is referenced by: fun2dmnop 13490 funvtxdm2val 26114 funiedgdm2val 26115 funvtxdm2valOLD 26116 funiedgdm2valOLD 26117 |
Copyright terms: Public domain | W3C validator |