![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2cnv | Structured version Visualization version GIF version |
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
fun2cnv | ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnv2 6097 | . 2 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑦◡𝐴𝑥) | |
2 | vex 3354 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | vex 3354 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | brcnv 5443 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
5 | 4 | mobii 2641 | . . 3 ⊢ (∃*𝑦 𝑦◡𝐴𝑥 ↔ ∃*𝑦 𝑥𝐴𝑦) |
6 | 5 | albii 1895 | . 2 ⊢ (∀𝑥∃*𝑦 𝑦◡𝐴𝑥 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
7 | 1, 6 | bitri 264 | 1 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1629 ∃*wmo 2619 class class class wbr 4786 ◡ccnv 5248 Fun wfun 6025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-fun 6033 |
This theorem is referenced by: svrelfun 6101 fun11 6103 |
Copyright terms: Public domain | W3C validator |