![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fulloppc | Structured version Visualization version GIF version |
Description: The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
fulloppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
fulloppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
fulloppc.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
Ref | Expression |
---|---|
fulloppc | ⊢ (𝜑 → 𝐹(𝑂 Full 𝑃)tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fulloppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
2 | fulloppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
3 | fulloppc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
4 | fullfunc 16613 | . . . . 5 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
5 | 4 | ssbri 4730 | . . . 4 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
7 | 1, 2, 6 | funcoppc 16582 | . 2 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
8 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | eqid 2651 | . . . . . 6 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | eqid 2651 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
11 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Full 𝐷)𝐺) |
12 | simprr 811 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
13 | simprl 809 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
14 | 8, 9, 10, 11, 12, 13 | fullfo 16619 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
15 | forn 6156 | . . . . 5 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) → ran (𝑦𝐺𝑥) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑦𝐺𝑥) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
17 | ovtpos 7412 | . . . . 5 ⊢ (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥) | |
18 | 17 | rneqi 5384 | . . . 4 ⊢ ran (𝑥tpos 𝐺𝑦) = ran (𝑦𝐺𝑥) |
19 | 9, 2 | oppchom 16422 | . . . 4 ⊢ ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦)) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) |
20 | 16, 18, 19 | 3eqtr4g 2710 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦))) |
21 | 20 | ralrimivva 3000 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦))) |
22 | 1, 8 | oppcbas 16425 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
23 | eqid 2651 | . . 3 ⊢ (Hom ‘𝑃) = (Hom ‘𝑃) | |
24 | 22, 23 | isfull 16617 | . 2 ⊢ (𝐹(𝑂 Full 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦)))) |
25 | 7, 21, 24 | sylanbrc 699 | 1 ⊢ (𝜑 → 𝐹(𝑂 Full 𝑃)tpos 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 class class class wbr 4685 ran crn 5144 –onto→wfo 5924 ‘cfv 5926 (class class class)co 6690 tpos ctpos 7396 Basecbs 15904 Hom chom 15999 oppCatcoppc 16418 Func cfunc 16561 Full cful 16609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-hom 16013 df-cco 16014 df-cat 16376 df-cid 16377 df-oppc 16419 df-func 16565 df-full 16611 |
This theorem is referenced by: ffthoppc 16631 |
Copyright terms: Public domain | W3C validator |