Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullfunfnv Structured version   Visualization version   GIF version

Theorem fullfunfnv 32178
Description: The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fullfunfnv FullFun𝐹 Fn V

Proof of Theorem fullfunfnv
StepHypRef Expression
1 funpartfun 32175 . . . . 5 Fun Funpart𝐹
2 funfn 5956 . . . . 5 (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹)
31, 2mpbi 220 . . . 4 Funpart𝐹 Fn dom Funpart𝐹
4 0ex 4823 . . . . . 6 ∅ ∈ V
54fconst 6129 . . . . 5 ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅}
6 ffn 6083 . . . . 5 (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹))
75, 6ax-mp 5 . . . 4 ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)
83, 7pm3.2i 470 . . 3 (Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹))
9 disjdif 4073 . . 3 (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅
10 fnun 6035 . . 3 (((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) ∧ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅) → (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)))
118, 9, 10mp2an 708 . 2 (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))
12 df-fullfun 32107 . . . 4 FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))
1312fneq1i 6023 . . 3 (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V)
14 unvdif 4075 . . . . 5 (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) = V
1514eqcomi 2660 . . . 4 V = (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))
1615fneq2i 6024 . . 3 ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)))
1713, 16bitri 264 . 2 (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)))
1811, 17mpbir 221 1 FullFun𝐹 Fn V
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  Vcvv 3231  cdif 3604  cun 3605  cin 3606  c0 3948  {csn 4210   × cxp 5141  dom cdm 5143  Fun wfun 5920   Fn wfn 5921  wf 5922  Funpartcfunpart 32081  FullFuncfullfn 32082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-symdif 3877  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-eprel 5058  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fo 5932  df-fv 5934  df-1st 7210  df-2nd 7211  df-txp 32086  df-singleton 32094  df-singles 32095  df-image 32096  df-funpart 32106  df-fullfun 32107
This theorem is referenced by:  brfullfun  32180
  Copyright terms: Public domain W3C validator