![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fuchom | Structured version Visualization version GIF version |
Description: The morphisms in the functor category are natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
fucbas.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
fuchom.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
Ref | Expression |
---|---|
fuchom | ⊢ 𝑁 = (Hom ‘𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucbas.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
2 | eqid 2760 | . . . . 5 ⊢ (𝐶 Func 𝐷) = (𝐶 Func 𝐷) | |
3 | fuchom.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
4 | eqid 2760 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | eqid 2760 | . . . . 5 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
6 | simpl 474 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐶 ∈ Cat) | |
7 | simpr 479 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
8 | eqid 2760 | . . . . . 6 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | fuccofval 16820 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (comp‘𝑄) = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ℎ ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | fucval 16819 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉}) |
11 | catstr 16818 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉} Struct 〈1, ;15〉 | |
12 | homid 16277 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
13 | snsstp2 4493 | . . . 4 ⊢ {〈(Hom ‘ndx), 𝑁〉} ⊆ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉} | |
14 | ovex 6841 | . . . . . 6 ⊢ (𝐶 Nat 𝐷) ∈ V | |
15 | 3, 14 | eqeltri 2835 | . . . . 5 ⊢ 𝑁 ∈ V |
16 | 15 | a1i 11 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 ∈ V) |
17 | eqid 2760 | . . . 4 ⊢ (Hom ‘𝑄) = (Hom ‘𝑄) | |
18 | 10, 11, 12, 13, 16, 17 | strfv3 16110 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = 𝑁) |
19 | 18 | eqcomd 2766 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄)) |
20 | df-hom 16168 | . . . 4 ⊢ Hom = Slot ;14 | |
21 | 20 | str0 16113 | . . 3 ⊢ ∅ = (Hom ‘∅) |
22 | 3 | natffn 16810 | . . . . 5 ⊢ 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) |
23 | funcrcl 16724 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
24 | 23 | con3i 150 | . . . . . . . . 9 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷)) |
25 | 24 | eq0rdv 4122 | . . . . . . . 8 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅) |
26 | 25 | xpeq2d 5296 | . . . . . . 7 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ((𝐶 Func 𝐷) × ∅)) |
27 | xp0 5710 | . . . . . . 7 ⊢ ((𝐶 Func 𝐷) × ∅) = ∅ | |
28 | 26, 27 | syl6eq 2810 | . . . . . 6 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ∅) |
29 | 28 | fneq2d 6143 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ↔ 𝑁 Fn ∅)) |
30 | 22, 29 | mpbii 223 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 Fn ∅) |
31 | fn0 6172 | . . . 4 ⊢ (𝑁 Fn ∅ ↔ 𝑁 = ∅) | |
32 | 30, 31 | sylib 208 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = ∅) |
33 | fnfuc 16806 | . . . . . . 7 ⊢ FuncCat Fn (Cat × Cat) | |
34 | fndm 6151 | . . . . . . 7 ⊢ ( FuncCat Fn (Cat × Cat) → dom FuncCat = (Cat × Cat)) | |
35 | 33, 34 | ax-mp 5 | . . . . . 6 ⊢ dom FuncCat = (Cat × Cat) |
36 | 35 | ndmov 6983 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 FuncCat 𝐷) = ∅) |
37 | 1, 36 | syl5eq 2806 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = ∅) |
38 | 37 | fveq2d 6356 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = (Hom ‘∅)) |
39 | 21, 32, 38 | 3eqtr4a 2820 | . 2 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄)) |
40 | 19, 39 | pm2.61i 176 | 1 ⊢ 𝑁 = (Hom ‘𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∅c0 4058 {ctp 4325 〈cop 4327 × cxp 5264 dom cdm 5266 Fn wfn 6044 ‘cfv 6049 (class class class)co 6813 1c1 10129 4c4 11264 5c5 11265 ;cdc 11685 ndxcnx 16056 Basecbs 16059 Hom chom 16154 compcco 16155 Catccat 16526 Func cfunc 16715 Nat cnat 16802 FuncCat cfuc 16803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-hom 16168 df-cco 16169 df-func 16719 df-nat 16804 df-fuc 16805 |
This theorem is referenced by: fuccatid 16830 fucsect 16833 fuciso 16836 evlfcllem 17062 evlfcl 17063 curfcl 17073 uncf2 17078 curfuncf 17079 diag2cl 17087 curf2ndf 17088 yonedalem21 17114 yonedalem22 17119 yonedalem3b 17120 yonedalem3 17121 yonffthlem 17123 |
Copyright terms: Public domain | W3C validator |