MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftpg Structured version   Visualization version   GIF version

Theorem ftpg 6574
Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
ftpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})

Proof of Theorem ftpg
StepHypRef Expression
1 3simpa 1140 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (𝑋𝑈𝑌𝑉))
2 3simpa 1140 . . . 4 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (𝐴𝐹𝐵𝐺))
3 simp1 1128 . . . 4 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
4 fprg 6573 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ (𝐴𝐹𝐵𝐺) ∧ 𝑋𝑌) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
51, 2, 3, 4syl3an 1505 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
6 eqidd 2749 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩})
7 simp3 1130 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑍𝑊)
8 simp3 1130 . . . . . . 7 ((𝐴𝐹𝐵𝐺𝐶𝐻) → 𝐶𝐻)
97, 8anim12i 591 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻)) → (𝑍𝑊𝐶𝐻))
1093adant3 1124 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑍𝑊𝐶𝐻))
11 fsng 6555 . . . . 5 ((𝑍𝑊𝐶𝐻) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
1210, 11syl 17 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
136, 12mpbird 247 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶})
14 elpri 4330 . . . . . . . 8 (𝑍 ∈ {𝑋, 𝑌} → (𝑍 = 𝑋𝑍 = 𝑌))
15 eqcom 2755 . . . . . . . . . . 11 (𝑍 = 𝑋𝑋 = 𝑍)
16 nne 2924 . . . . . . . . . . 11 𝑋𝑍𝑋 = 𝑍)
1715, 16bitr4i 267 . . . . . . . . . 10 (𝑍 = 𝑋 ↔ ¬ 𝑋𝑍)
18 eqcom 2755 . . . . . . . . . . 11 (𝑍 = 𝑌𝑌 = 𝑍)
19 nne 2924 . . . . . . . . . . 11 𝑌𝑍𝑌 = 𝑍)
2018, 19bitr4i 267 . . . . . . . . . 10 (𝑍 = 𝑌 ↔ ¬ 𝑌𝑍)
2117, 20orbi12i 544 . . . . . . . . 9 ((𝑍 = 𝑋𝑍 = 𝑌) ↔ (¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
22 ianor 510 . . . . . . . . 9 (¬ (𝑋𝑍𝑌𝑍) ↔ (¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2321, 22sylbb2 228 . . . . . . . 8 ((𝑍 = 𝑋𝑍 = 𝑌) → ¬ (𝑋𝑍𝑌𝑍))
2414, 23syl 17 . . . . . . 7 (𝑍 ∈ {𝑋, 𝑌} → ¬ (𝑋𝑍𝑌𝑍))
2524con2i 134 . . . . . 6 ((𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
26253adant1 1122 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
27263ad2ant3 1127 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
28 disjsn 4378 . . . 4 (({𝑋, 𝑌} ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ {𝑋, 𝑌})
2927, 28sylibr 224 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
30 fun 6215 . . 3 ((({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵} ∧ {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶}) ∧ ({𝑋, 𝑌} ∩ {𝑍}) = ∅) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
315, 13, 29, 30syl21anc 1462 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
32 df-tp 4314 . . . 4 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
3332feq1i 6185 . . 3 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
34 df-tp 4314 . . . 4 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
35 df-tp 4314 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
3634, 35feq23i 6188 . . 3 (({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3733, 36bitri 264 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3831, 37sylibr 224 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1620  wcel 2127  wne 2920  cun 3701  cin 3702  c0 4046  {csn 4309  {cpr 4311  {ctp 4313  cop 4315  wf 6033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-br 4793  df-opab 4853  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044
This theorem is referenced by:  ftp  6575
  Copyright terms: Public domain W3C validator