MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthinv Structured version   Visualization version   GIF version

Theorem fthinv 16793
Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthsect.b 𝐵 = (Base‘𝐶)
fthsect.h 𝐻 = (Hom ‘𝐶)
fthsect.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthsect.x (𝜑𝑋𝐵)
fthsect.y (𝜑𝑌𝐵)
fthsect.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
fthsect.n (𝜑𝑁 ∈ (𝑌𝐻𝑋))
fthinv.s 𝐼 = (Inv‘𝐶)
fthinv.t 𝐽 = (Inv‘𝐷)
Assertion
Ref Expression
fthinv (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))

Proof of Theorem fthinv
StepHypRef Expression
1 fthsect.b . . . 4 𝐵 = (Base‘𝐶)
2 fthsect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 fthsect.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
4 fthsect.x . . . 4 (𝜑𝑋𝐵)
5 fthsect.y . . . 4 (𝜑𝑌𝐵)
6 fthsect.m . . . 4 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
7 fthsect.n . . . 4 (𝜑𝑁 ∈ (𝑌𝐻𝑋))
8 eqid 2771 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
9 eqid 2771 . . . 4 (Sect‘𝐷) = (Sect‘𝐷)
101, 2, 3, 4, 5, 6, 7, 8, 9fthsect 16792 . . 3 (𝜑 → (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
111, 2, 3, 5, 4, 7, 6, 8, 9fthsect 16792 . . 3 (𝜑 → (𝑁(𝑌(Sect‘𝐶)𝑋)𝑀 ↔ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)))
1210, 11anbi12d 616 . 2 (𝜑 → ((𝑀(𝑋(Sect‘𝐶)𝑌)𝑁𝑁(𝑌(Sect‘𝐶)𝑋)𝑀) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))))
13 fthinv.s . . 3 𝐼 = (Inv‘𝐶)
14 fthfunc 16774 . . . . . . . 8 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
1514ssbri 4832 . . . . . . 7 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
163, 15syl 17 . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
17 df-br 4788 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
1816, 17sylib 208 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
19 funcrcl 16730 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2018, 19syl 17 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2120simpld 482 . . 3 (𝜑𝐶 ∈ Cat)
221, 13, 21, 4, 5, 8isinv 16627 . 2 (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁𝑁(𝑌(Sect‘𝐶)𝑋)𝑀)))
23 eqid 2771 . . 3 (Base‘𝐷) = (Base‘𝐷)
24 fthinv.t . . 3 𝐽 = (Inv‘𝐷)
2520simprd 483 . . 3 (𝜑𝐷 ∈ Cat)
261, 23, 16funcf1 16733 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐷))
2726, 4ffvelrnd 6505 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
2826, 5ffvelrnd 6505 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
2923, 24, 25, 27, 28, 9isinv 16627 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))))
3012, 22, 293bitr4d 300 1 (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  cop 4323   class class class wbr 4787  cfv 6030  (class class class)co 6796  Basecbs 16064  Hom chom 16160  Catccat 16532  Sectcsect 16611  Invcinv 16612   Func cfunc 16721   Faith cfth 16770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-map 8015  df-ixp 8067  df-cat 16536  df-cid 16537  df-sect 16614  df-inv 16615  df-func 16725  df-fth 16772
This theorem is referenced by:  ffthiso  16796
  Copyright terms: Public domain W3C validator