Step | Hyp | Ref
| Expression |
1 | | ftc2re.e |
. . . . . 6
⊢ 𝐸 = (𝐶(,)𝐷) |
2 | | ioossre 12273 |
. . . . . 6
⊢ (𝐶(,)𝐷) ⊆ ℝ |
3 | 1, 2 | eqsstri 3668 |
. . . . 5
⊢ 𝐸 ⊆
ℝ |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐸 ⊆ ℝ) |
5 | | ftc2re.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐸) |
6 | 4, 5 | sseldd 3637 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | | ftc2re.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝐸) |
8 | 4, 7 | sseldd 3637 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
9 | | ftc2re.le |
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
10 | | ax-resscn 10031 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
11 | 10 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ⊆
ℂ) |
12 | | ftc2re.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐸⟶ℂ) |
13 | | iccssre 12293 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
14 | 6, 8, 13 | syl2anc 694 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
15 | | eqid 2651 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
16 | 15 | tgioo2 22653 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
17 | 15, 16 | dvres 23720 |
. . . . . 6
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ) ∧ (𝐸 ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝐴[,]𝐵)))) |
18 | 11, 12, 4, 14, 17 | syl22anc 1367 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝐴[,]𝐵)))) |
19 | | iccntr 22671 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
20 | 6, 8, 19 | syl2anc 694 |
. . . . . 6
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
21 | 20 | reseq2d 5428 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹) ↾
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) |
22 | 18, 21 | eqtrd 2685 |
. . . 4
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) |
23 | | ioossicc 12297 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
24 | 23 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
25 | 1, 5, 7 | fct2relem 30803 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
26 | 24, 25 | sstrd 3646 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸) |
27 | | ftc2re.1 |
. . . . 5
⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) |
28 | | rescncf 22747 |
. . . . 5
⊢ ((𝐴(,)𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))) |
29 | 26, 27, 28 | sylc 65 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
30 | 22, 29 | eqeltrd 2730 |
. . 3
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
31 | | ioombl 23379 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈ dom vol |
32 | 31 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
33 | | cnmbf 23471 |
. . . . . 6
⊢ (((𝐴(,)𝐵) ∈ dom vol ∧ ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn) |
34 | 32, 29, 33 | syl2anc 694 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn) |
35 | | dmres 5454 |
. . . . . . 7
⊢ dom
((ℝ D 𝐹) ↾
(𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) |
36 | 35 | fveq2i 6232 |
. . . . . 6
⊢
(vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) = (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) |
37 | | cncff 22743 |
. . . . . . . . . . . 12
⊢ ((ℝ
D 𝐹) ∈ (𝐸–cn→ℂ) → (ℝ D 𝐹):𝐸⟶ℂ) |
38 | 27, 37 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℂ) |
39 | | fdm 6089 |
. . . . . . . . . . 11
⊢ ((ℝ
D 𝐹):𝐸⟶ℂ → dom (ℝ D 𝐹) = 𝐸) |
40 | 38, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → dom (ℝ D 𝐹) = 𝐸) |
41 | 40 | ineq2d 3847 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = ((𝐴(,)𝐵) ∩ 𝐸)) |
42 | | df-ss 3621 |
. . . . . . . . . 10
⊢ ((𝐴(,)𝐵) ⊆ 𝐸 ↔ ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵)) |
43 | 26, 42 | sylib 208 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵)) |
44 | 41, 43 | eqtrd 2685 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐵)) |
45 | 44 | fveq2d 6233 |
. . . . . . 7
⊢ (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) = (vol‘(𝐴(,)𝐵))) |
46 | | volioo 23383 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
47 | 6, 8, 9, 46 | syl3anc 1366 |
. . . . . . . 8
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
48 | 8, 6 | resubcld 10496 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
49 | 47, 48 | eqeltrd 2730 |
. . . . . . 7
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
50 | 45, 49 | eqeltrd 2730 |
. . . . . 6
⊢ (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) ∈ ℝ) |
51 | 36, 50 | syl5eqel 2734 |
. . . . 5
⊢ (𝜑 → (vol‘dom ((ℝ D
𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ) |
52 | | rescncf 22747 |
. . . . . . . . 9
⊢ ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
53 | 25, 52 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
54 | 27, 53 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
55 | | cniccbdd 23276 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ
D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥) |
56 | 6, 8, 54, 55 | syl3anc 1366 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥) |
57 | 35, 44 | syl5eq 2697 |
. . . . . . . . . . 11
⊢ (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
58 | 57, 24 | eqsstrd 3672 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)) |
59 | | ssralv 3699 |
. . . . . . . . . 10
⊢ (dom
((ℝ D 𝐹) ↾
(𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)) |
60 | 58, 59 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)) |
61 | 60 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)) |
62 | 58 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)) |
63 | 62 | sselda 3636 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴[,]𝐵)) |
64 | | fvres 6245 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦)) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦)) |
66 | | simpr 476 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) |
67 | 57 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
68 | 66, 67 | eleqtrd 2732 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴(,)𝐵)) |
69 | | fvres 6245 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦)) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦)) |
71 | 65, 70 | eqtr4d 2688 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) |
72 | 71 | fveq2d 6233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦))) |
73 | 72 | breq1d 4695 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
74 | 73 | biimpd 219 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
75 | 74 | ralimdva 2991 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
76 | 61, 75 | syld 47 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
77 | 76 | reximdva 3046 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)) |
78 | 56, 77 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥) |
79 | | bddibl 23651 |
. . . . 5
⊢
((((ℝ D 𝐹)
↾ (𝐴(,)𝐵)) ∈ MblFn ∧
(vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈
𝐿1) |
80 | 34, 51, 78, 79 | syl3anc 1366 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈
𝐿1) |
81 | 22, 80 | eqeltrd 2730 |
. . 3
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈
𝐿1) |
82 | | dvcn 23729 |
. . . . 5
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ ∧ 𝐸 ⊆ ℝ) ∧ dom (ℝ D 𝐹) = 𝐸) → 𝐹 ∈ (𝐸–cn→ℂ)) |
83 | 11, 12, 4, 40, 82 | syl31anc 1369 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐸–cn→ℂ)) |
84 | | rescncf 22747 |
. . . . 5
⊢ ((𝐴[,]𝐵) ⊆ 𝐸 → (𝐹 ∈ (𝐸–cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
85 | 25, 84 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (𝐸–cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
86 | 83, 85 | mpd 15 |
. . 3
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
87 | 6, 8, 9, 30, 81, 86 | ftc2 23852 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴))) |
88 | 22 | fveq1d 6231 |
. . . . 5
⊢ (𝜑 → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡)) |
89 | | fvres 6245 |
. . . . 5
⊢ (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
90 | 88, 89 | sylan9eq 2705 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
91 | 90 | ralrimiva 2995 |
. . 3
⊢ (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
92 | | itgeq2 23589 |
. . 3
⊢
(∀𝑡 ∈
(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
93 | 91, 92 | syl 17 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
94 | 6 | rexrd 10127 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
95 | 8 | rexrd 10127 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
96 | | ubicc2 12327 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
97 | 94, 95, 9, 96 | syl3anc 1366 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
98 | 97 | fvresd 6246 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹‘𝐵)) |
99 | | lbicc2 12326 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
100 | 94, 95, 9, 99 | syl3anc 1366 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
101 | 100 | fvresd 6246 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹‘𝐴)) |
102 | 98, 101 | oveq12d 6708 |
. 2
⊢ (𝜑 → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
103 | 87, 93, 102 | 3eqtr3d 2693 |
1
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |